Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group 7 element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Organometallic compounds === ==== Manganese ==== {{Main article|Organomanganese chemistry}} Organomanganese compounds were first reported in 1937 by Gilman and Bailee who described the reaction of [[phenyllithium]] and [[manganese(II) iodide]] to form phenylmanganese iodide (PhMnI) and diphenylmanganese (Ph<sub>2</sub>Mn).<ref name="Cahiez2009">{{cite journal|title=Chemistry of Organomanganese(II) Compounds|first1=Gerard|last1=Cahiez|first2=Christophe|last2=Duplais|first3=Julien|last3=Buendia|journal=[[Chem. Rev.]]|year=2009|volume=109 |issue=3 |pages=1434–1476 |doi=10.1021/cr800341a|pmid=19209933 }}</ref> Following this precedent, other organomanganese halides can be obtained by alkylation of [[manganese(II) chloride]], [[manganese(II) bromide]], and [[manganese(II) iodide]]. Manganese iodide is attractive because the anhydrous compound can be prepared in situ from manganese and [[iodine]] in [[diethyl ether|ether]]. Typical alkylating agents are [[organolithium]] or [[organomagnesium]] compounds. The chemistry of organometallic compounds of Mn(II) are unusual among the [[transition metal]]s due to the high ionic character of the Mn(II)-C bond.<ref>{{cite journal|first=Richard A.|last=Layfield|title=Manganese(II): The Black Sheep of the Organometallic Family|journal=[[Chem. Soc. Rev.]]|year=2008 |volume=37|issue=6|pages=1098–1107 |doi=10.1039/b708850g |pmid=18497923 }}</ref> The reactivity of organomanganese compounds can be compared to that of [[Organomagnesium chemistry|organomagnesium]] and [[organozinc compound]]s. The [[electronegativity]] of Mn (1.55) is comparable to that of Mg (1.31) and Zn (1.65), making the carbon atom (EN = 2.55) [[nucleophilic]]. The [[reduction potential]] of Mn is also intermediate between Mg and Zn. ==== Technetium ==== {{Main article|Organotechnetium chemistry}} [[File:Tc CNCH2CMe2(OMe) 6Cation.png|thumb|right|[[Technetium (99mTc) sestamibi]] ("Cardiolite") is widely used for imaging of the heart.]] Technetium forms a variety of [[coordination complex]]es with organic ligands. Many have been well-investigated because of their relevance to [[nuclear medicine]].<ref>{{cite journal|doi=10.1021/cr1000755|pmid=20415476|title=Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era|journal=Chemical Reviews|volume=110|issue=5|pages=2903–20|year=2010|last1=Bartholomä|first1=Mark D.|last2=Louie|first2=Anika S.|last3=Valliant|first3=John F.|last4=Zubieta|first4=Jon}}</ref> Technetium forms a variety of compounds with Tc–C bonds, i.e. organotechnetium complexes. Prominent members of this class are complexes with CO, arene, and cyclopentadienyl ligands.<ref name="Alberto" /> The binary carbonyl Tc<sub>2</sub>(CO)<sub>10</sub> is a white volatile solid.<ref>{{cite journal|doi = 10.1021/ja01474a038|date = 1961|last1 = Hileman|first1 = J. C.|last2 = Huggins|last3 = Kaesz|journal = Journal of the American Chemical Society |volume = 83|title = Technetium carbonyl|pages = 2953–2954|first2 = D. K.|first3 = H. D.|issue = 13}}</ref> In this molecule, two technetium atoms are bound to each other; each atom is surrounded by [[octahedron|octahedra]] of five carbonyl ligands. The bond length between technetium atoms, 303 pm,<ref>{{cite journal|title = The Crystal Structure of Ditechnetium Decacarbonyl|doi =10.1021/ic50030a011|date =1965|last1 =Bailey|first1 = M. F.|journal =Inorganic Chemistry|volume =4|pages =1140–1145|last2 = Dahl|first2 = Lawrence F.|issue = 8}}</ref><ref>{{cite journal|doi = 10.1107/S0365110X62002789|title = Unit cell and space group of technetium carbonyl, Tc2(CO)10|date = 1962|last1 = Wallach|first1 = D.|journal = Acta Crystallographica|volume = 15|page = 1058|issue = 10| bibcode=1962AcCry..15.1058W }}</ref> is significantly larger than the distance between two atoms in metallic technetium (272 pm). Similar [[carbonyl]]s are formed by technetium's [[Congener (chemistry)|congeners]], manganese and rhenium.{{sfn|Schwochau|2000|pp=286, 328}} Interest in organotechnetium compounds has also been motivated by applications in [[nuclear medicine]].<ref name="Alberto">{{cite book|doi=10.1007/978-3-642-13185-1_9|chapter=Organometallic Radiopharmaceuticals|title=Medicinal Organometallic Chemistry|volume=32|pages=219–246|series=Topics in Organometallic Chemistry|year=2010 |last1=Alberto|first1=Roger|isbn=978-3-642-13184-4}}</ref> Unusual for other metal carbonyls, Tc forms aquo-carbonyl complexes, prominent being [Tc(CO)<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]<sup>+</sup>.<ref name="Alberto" /> ==== Rhenium ==== {{Main article|Organorhenium chemistry}} [[Dirhenium decacarbonyl]] is the most common entry to organorhenium chemistry. Its reduction with sodium [[Amalgam (chemistry)|amalgam]] gives Na[Re(CO)<sub>5</sub>] with rhenium in the formal oxidation state −1.<ref>{{cite journal|doi = 10.1002/cber.19901230103|title = Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe|date = 1990|author = Breimair, Josef|journal = Chemische Berichte|volume = 123|page = 7|last2 = Steimann|first2 = Manfred|last3 = Wagner|first3 = Barbara|last4 = Beck|first4 = Wolfgang}}</ref> Dirhenium decacarbonyl can be oxidised with [[bromine]] to [[bromopentacarbonylrhenium(I)]]:<ref>{{cite book|title=Inorganic Syntheses|first=Steven P.|last =Schmidt|author2=Trogler, William C. |author3=Basolo, Fred |chapter=Pentacarbonylrhenium Halides | volume=28|date=1990|pages=154–159|doi=10.1002/9780470132593.ch42|isbn=978-0-470-13259-3}}</ref> :Re<sub>2</sub>(CO)<sub>10</sub> + Br<sub>2</sub> → 2 Re(CO)<sub>5</sub>Br Reduction of this pentacarbonyl with [[zinc]] and [[acetic acid]] gives [[pentacarbonylhydridorhenium]]:<ref name="Urb">{{cite book|author=Michael A. Urbancic|author2=John R. Shapley|chapter=Pentacarbonylhydridorhenium |title=Inorganic Syntheses|volume=28|pages=165–168|date=1990|doi =10.1002/9780470132593.ch43|isbn=978-0-470-13259-3}}</ref> :Re(CO)<sub>5</sub>Br + Zn + HOAc → Re(CO)<sub>5</sub>H + ZnBr(OAc) [[Methylrhenium trioxide]] ("MTO"), CH<sub>3</sub>ReO<sub>3</sub> is a volatile, colourless solid has been used as a [[catalyst]] in some laboratory experiments. It can be prepared by many routes, a typical method is the reaction of Re<sub>2</sub>O<sub>7</sub> and [[tetramethyltin]]: :Re<sub>2</sub>O<sub>7</sub> + (CH<sub>3</sub>)<sub>4</sub>Sn → CH<sub>3</sub>ReO<sub>3</sub> + (CH<sub>3</sub>)<sub>3</sub>SnOReO<sub>3</sub> Analogous alkyl and aryl derivatives are known. MTO catalyses for the oxidations with [[hydrogen peroxide]]. Terminal [[alkyne]]s yield the corresponding acid or ester, internal alkynes yield diketones, and [[alkene]]s give epoxides. MTO also catalyses the conversion of [[aldehyde]]s and [[diazoalkane]]s into an alkene.<ref>Hudson, A. (2002) “Methyltrioxorhenium” in ''Encyclopedia of Reagents for Organic Synthesis''. John Wiley & Sons: New York, {{ISBN|9780470842898}}, {{doi|10.1002/047084289X}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)