Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Harmonic numbers for real and complex values== {{unreferenced section|date=May 2019}} The formulae given above, <math display="block"> H_x = \int_0^1 \frac{1-t^x}{1-t} \, dt= \sum_{k=1}^\infty {x \choose k} \frac{(-1)^{k-1}}{k}</math> are an integral and a series representation for a function that interpolates the harmonic numbers and, via [[analytic continuation]], extends the definition to the complex plane other than the negative integers ''x''. The interpolating function is in fact closely related to the [[digamma function]] <math display="block">H_x = \psi(x+1)+\gamma,</math> where {{math|''ψ''(''x'')}} is the digamma function, and {{math|''γ''}} is the [[Euler–Mascheroni constant]]. The integration process may be repeated to obtain <math display="block">H_{x,2}= \sum_{k=1}^\infty \frac {(-1)^{k-1}}{k} {x \choose k} H_k.</math> The [[Taylor series]] for the harmonic numbers is <math display="block">H_x=\sum_{k=2}^\infty (-1)^{k}\zeta (k)\;x^{k-1}\quad\text{ for } |x| < 1</math> which comes from the Taylor series for the digamma function (<math>\zeta </math> is the [[Riemann zeta function]]). === Alternative, asymptotic formulation === There is an asymptotic formulation that gives the same result as the analytic continuation of the integral just described. When seeking to approximate {{math|''H''{{sub|''x''}}}} for a [[complex number]] {{math|''x''}}, it is effective to first compute {{math|''H''{{sub|''m''}}}} for some large integer {{math|''m''}}. Use that as an approximation for the value of {{math|''H''{{sub|''m''+''x''}}}}. Then use the recursion relation {{math|1=''H''{{sub|''n''}} = ''H''{{sub|''n''−1}} + 1/''n''}} backwards {{math|''m''}} times, to unwind it to an approximation for {{math|''H''{{sub|''x''}}}}. Furthermore, this approximation is exact in the limit as {{math|''m''}} goes to infinity. Specifically, for a fixed integer {{math|''n''}}, it is the case that <math display="block">\lim_{m \rightarrow \infty} \left[H_{m+n} - H_m\right] = 0.</math> If {{math|''n''}} is not an integer then it is not possible to say whether this equation is true because we have not yet (in this section) defined harmonic numbers for non-integers. However, we do get a unique extension of the harmonic numbers to the non-integers by insisting that this equation continue to hold when the arbitrary integer {{math|''n''}} is replaced by an arbitrary complex number {{math|''x''}}, <math display="block">\lim_{m \rightarrow \infty} \left[H_{m+x} - H_m\right] = 0\,.</math> Swapping the order of the two sides of this equation and then subtracting them from {{math|''H''<sub>''x''</sub>}} gives <math display="block"> \begin{align}H_x &= \lim_{m \rightarrow \infty} \left[H_m - (H_{m+x}-H_x)\right] \\[6pt] &= \lim_{m \rightarrow \infty} \left[\left(\sum_{k=1}^m \frac{1}{k}\right) - \left(\sum_{k=1}^m \frac{1}{x+k}\right) \right] \\[6pt] &= \lim_{m \rightarrow \infty} \sum_{k=1}^m \left(\frac{1}{k} - \frac{1}{x+k}\right) = x \sum_{k=1}^{\infty} \frac{1}{k(x+k)}\, . \end{align} </math> This [[infinite series]] converges for all complex numbers {{math|''x''}} except the negative integers, which fail because trying to use the recursion relation {{math|1=''H''{{sub|''n''}} = ''H''{{sub|''n''−1}} + 1/''n''}} backwards through the value {{math|1=''n'' = 0}} involves a division by zero. By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) {{math|1=''H''{{sub|0}} = 0}}, (2) {{math|1=''H''{{sub|''x''}} = ''H''{{sub|''x''−1}} + 1/''x''}} for all complex numbers {{math|''x''}} except the non-positive integers, and (3) {{math|1=lim<sub>''m''→+∞</sub> (''H''<sub>''m''+''x''</sub> − ''H''<sub>''m''</sub>) = 0}} for all complex values {{math|''x''}}. This last formula can be used to show that <math display="block"> \int_0^1 H_x \, dx = \gamma, </math> where {{math|''γ''}} is the [[Euler–Mascheroni constant]] or, more generally, for every {{math|''n''}} we have: <math display="block"> \int_0^nH_{x}\,dx = n\gamma + \ln(n!) .</math> ===Special values for fractional arguments=== There are the following special analytic values for fractional arguments between 0 and 1, given by the integral <math display="block">H_\alpha = \int_0^1\frac{1-x^\alpha}{1-x}\,dx\, .</math> More values may be generated from the recurrence relation <math display="block"> H_\alpha = H_{\alpha-1}+\frac{1}{\alpha}\,,</math> or from the reflection relation <math display="block"> H_{-\alpha}-H_{\alpha-1} = \pi\cot{(\pi\alpha)}.</math> For example: <math display="block"> \begin{align} H_{\frac{1}{2}} &= 2 - 2\ln 2 \\ H_{\frac{1}{3}} &= 3 - \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\ H_{\frac{2}{3}} &= \frac{3}{2}+\frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\ H_{\frac{1}{4}} &= 4 - \frac{\pi}{2} - 3\ln 2 \\ H_{\frac{1}{5}} &= 5 - \frac{\pi}{2} \sqrt{1+\frac{2}{\sqrt{5}}} - \frac{5}{4} \ln 5 - \frac{\sqrt{5}}{4} \ln\left(\frac{3+\sqrt{5}}{2}\right) \\ H_{\frac{3}{4}} &= \frac{4}{3} + \frac{\pi}{2} - 3\ln 2 \\ H_{\frac{1}{6}} &= 6 - \frac{\sqrt{3}}{2} \pi - 2\ln 2 - \frac{3}{2} \ln 3 \\ H_{\frac{1}{8}} &= 8 - \frac{1+\sqrt{2}}{2} \pi - 4\ln{2} - \frac{1}{\sqrt{2}} \left(\ln\left(2 + \sqrt{2}\right) - \ln\left(2 - \sqrt{2}\right)\right) \\ H_{\frac{1}{12}} &= 12 - \left(1+\frac{\sqrt{3}}{2}\right)\pi - 3\ln{2} - \frac{3}{2} \ln{3} + \sqrt{3} \ln\left(2-\sqrt{3}\right) \end{align}</math> Which are computed via [[Digamma function#Gauss's digamma theorem|Gauss's digamma theorem]], which essentially states that for positive integers ''p'' and ''q'' with ''p'' < ''q'' <math display="block"> H_{\frac{p}{q}} = \frac{q}{p} +2\sum_{k=1}^{\lfloor\frac{q-1}{2}\rfloor} \cos\left(\frac{2 \pi pk}{q}\right)\ln\left({\sin \left(\frac{\pi k}{q}\right)}\right)-\frac{\pi}{2}\cot\left(\frac{\pi p}{q}\right)-\ln\left(2q\right)</math> ===Relation to the Riemann zeta function=== Some derivatives of fractional harmonic numbers are given by <math display="block"> \begin{align} \frac{d^n H_x}{dx^n} & = (-1)^{n+1}n!\left[\zeta(n+1)-H_{x,n+1}\right] \\[6pt] \frac{d^n H_{x,2}}{dx^n} & = (-1)^{n+1}(n+1)!\left[\zeta(n+2)-H_{x,n+2}\right] \\[6pt] \frac{d^n H_{x,3}}{dx^n} & = (-1)^{n+1}\frac{1}{2}(n+2)!\left[\zeta(n+3)-H_{x,n+3}\right]. \end{align} </math> And using [[Taylor series|Maclaurin series]], we have for ''x'' < 1 that <math display="block"> \begin{align} H_x & = \sum_{n=1}^\infty (-1)^{n+1}x^n\zeta(n+1) \\[5pt] H_{x,2} & = \sum_{n=1}^\infty (-1)^{n+1}(n+1)x^n\zeta(n+2) \\[5pt] H_{x,3} & = \frac{1}{2}\sum_{n=1}^\infty (-1)^{n+1}(n+1)(n+2)x^n\zeta(n+3). \end{align} </math> For fractional arguments between 0 and 1 and for ''a'' > 1, <math display="block"> \begin{align} H_{1/a} & = \frac{1}{a}\left(\zeta(2)-\frac{1}{a}\zeta(3)+\frac{1}{a^2}\zeta(4)-\frac{1}{a^3} \zeta(5) + \cdots\right) \\[6pt] H_{1/a, \, 2} & = \frac{1}{a}\left(2\zeta(3)-\frac{3}{a}\zeta(4)+\frac{4}{a^2}\zeta(5)-\frac{5}{a^3} \zeta(6) + \cdots\right) \\[6pt] H_{1/a, \, 3} & = \frac{1}{2a}\left(2\cdot3\zeta(4)-\frac{3\cdot4}{a}\zeta(5)+\frac{4\cdot5}{a^2}\zeta(6)-\frac{5\cdot6}{a^3}\zeta(7)+\cdots\right). \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)