Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hessian matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalizations to Riemannian manifolds === Let <math>(M,g)</math> be a [[Riemannian manifold]] and <math>\nabla</math> its [[Levi-Civita connection]]. Let <math>f : M \to \R</math> be a smooth function. Define the Hessian tensor by <math display=block>\operatorname{Hess}(f) \in \Gamma\left(T^*M \otimes T^*M\right) \quad \text{ by } \quad \operatorname{Hess}(f) := \nabla \nabla f = \nabla df,</math> where this takes advantage of the fact that the first covariant derivative of a function is the same as its ordinary differential. Choosing local coordinates <math>\left\{x^i\right\}</math> gives a local expression for the Hessian as <math display=block>\operatorname{Hess}(f)=\nabla_i\, \partial_j f \ dx^i \!\otimes\! dx^j = \left(\frac{\partial^2 f}{\partial x^i \partial x^j} - \Gamma_{ij}^k \frac{\partial f}{\partial x^k}\right) dx^i \otimes dx^j</math> where <math>\Gamma^k_{ij}</math> are the [[Christoffel symbols]] of the connection. Other equivalent forms for the Hessian are given by <math display=block>\operatorname{Hess}(f)(X, Y) = \langle \nabla_X \operatorname{grad} f,Y \rangle \quad \text{ and } \quad \operatorname{Hess}(f)(X,Y) = X(Yf)-df(\nabla_XY).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)