Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Homotopy groups of spheres
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Table=== The following table gives an idea of the complexity of the higher homotopy groups even for spheres of dimension 8 or less. In this table, the entries are either a) the [[trivial group]] 0, the infinite cyclic group {{math|Z}}, b) the finite [[cyclic group]]s of order {{mvar|n}} (written as {{math|Z<sub>''n''</sub>}}), or c) the [[direct product of groups|direct products]] of such groups (written, for example, as {{math|Z<sub>24</sub>×Z<sub>3</sub>}} or {{math|1=Z{{su|lh=1|b=2|p=2}} = Z<sub>2</sub>×Z<sub>2</sub>}}). Extended tables of homotopy groups of spheres are given [[#Table of homotopy groups|at the end of the article]]. {| class="wikitable" style="text-align:center" |- ! !style="width:4em"| π<sub>1</sub> !style="width:4em"| π<sub>2</sub> !style="width:4em"| π<sub>3</sub> !style="width:4em"| π<sub>4</sub> !style="width:4em"| π<sub>5</sub> !style="width:4em"| π<sub>6</sub> !style="width:4em"| π<sub>7</sub> !style="width:4em"| π<sub>8</sub> !style="width:4em"| π<sub>9</sub> !style="width:4em"| π<sub>10</sub> !style="width:4em"| π<sub>11</sub> !style="width:4em"| π<sub>12</sub> !style="width:4em"| π<sub>13</sub> !style="width:4em"| π<sub>14</sub> !style="width:4em"| π<sub>15</sub> |- !style="height: 2.5em"| ''S''<sup>1</sup> |style="background:white"| Z |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |style="background:white"| 0 |- !style="height: 2.5em"| ''S''<sup>2</sup> |style="background:#FFDDDD; border-top: solid black 2px"| 0 |style="background:#DDDDFF; border-top: solid black 2px; border-right: solid black 2px"| Z |style="background:#FFFFCC"| Z |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>12</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>3</sub> |style="background:white"| Z<sub>15</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z<sub>12</sub>×Z<sub>2</sub> |style="background:white"| Z<sub>84</sub>×Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z{{su|lh=1|b=2|p=2}} |- !style="height: 2.5em"| ''S''<sup>3</sup> |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF; border-top: solid black 2px"| Z |style="background:#DDFFDD; border-top: solid black 2px; border-right: solid black 2px"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>12</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>3</sub> |style="background:white"| Z<sub>15</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z<sub>12</sub>×Z<sub>2</sub> |style="background:white"| Z<sub>84</sub>×Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z{{su|lh=1|b=2|p=2}} |- !style="height: 2.5em"| ''S''<sup>4</sup> |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| Z |style="background:#DDFFDD; border-top: solid black 2px"| Z<sub>2</sub> |style="background:#FFDDDD; border-top: solid black 2px; border-right: solid black 2px"| Z<sub>2</sub> |style="background:#FFFFCC"| Z×Z<sub>12</sub> |style="background:white"| Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z{{su|lh=1|b=2|p=2}} |style="background:white"| Z<sub>24</sub>×Z<sub>3</sub> |style="background:white"| Z<sub>15</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z{{su|lh=1|b=2|p=3}} |style="background:white"| {{su|p=Z<sub>120</sub>×|b=Z<sub>12</sub>×Z<sub>2</sub>}} |style="background:white"| Z<sub>84</sub>×Z{{su|lh=1|b=2|p=5}} |- !style="height: 2.5em"| ''S''<sup>5</sup> |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| Z |style="background:#DDFFDD"| Z<sub>2</sub> |style="background:#FFDDDD; border-top: solid black 2px"| Z<sub>2</sub> |style="background:#DDDDFF; border-top: solid black 2px; border-right: solid black 2px"| Z<sub>24</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>30</sub> |style="background:white"| Z<sub>2</sub> |style="background:white"| Z{{su|lh=1|b=2|p=3}} |style="background:white"| Z<sub>72</sub>×Z<sub>2</sub> |- !style="height: 2.5em"| ''S''<sup>6</sup> |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| Z |style="background:#DDFFDD"| Z<sub>2</sub> |style="background:#FFDDDD"| Z<sub>2</sub> |style="background:#DDDDFF; border-top: solid black 2px"| Z<sub>24</sub> |style="background:#DDFFDD; border-top: solid black 2px; border-right: solid black 2px"| 0 |style="background:#FFFFCC"| Z |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>60</sub> |style="background:white"| Z<sub>24</sub>×Z<sub>2</sub> |style="background:white"| Z{{su|lh=1|b=2|p=3}} |- !style="height: 2.5em"| ''S''<sup>7</sup> |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| Z |style="background:#DDFFDD"| Z<sub>2</sub> |style="background:#FFDDDD"| Z<sub>2</sub> |style="background:#DDDDFF"| Z<sub>24</sub> |style="background:#DDFFDD; border-top: solid black 2px"| 0 |style="background:#FFDDDD; border-top: solid black 2px; border-right: solid black 2px"| 0 |style="background:white"| Z<sub>2</sub> |style="background:white"| Z<sub>120</sub> |style="background:white"| Z{{su|lh=1|b=2|p=3}} |- !style="height: 2.5em"| ''S''<sup>8</sup> |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| 0 |style="background:#DDFFDD"| 0 |style="background:#FFDDDD"| 0 |style="background:#DDDDFF"| Z |style="background:#DDFFDD"| Z<sub>2</sub> |style="background:#FFDDDD"| Z<sub>2</sub> |style="background:#DDDDFF"| Z<sub>24</sub> |style="background:#DDFFDD"| 0 |style="background:#FFDDDD; border-top: solid black 2px"| 0 |style="background:#DDDDFF; border-top: solid black 2px; border-right: solid black 2px"| Z<sub>2</sub> |style="background:#FFFFCC; border-bottom: solid black 2px"| Z×Z<sub>120</sub> |} The first row of this table is straightforward. The homotopy groups {{math|π<sub>''i''</sub>(''S''<sup>1</sup>)}} of the 1-sphere are trivial for {{math|''i'' > 1}}, because the universal [[covering space]], <math>\mathbb{R}</math>, which has the same higher homotopy groups, is contractible.{{sfn|Hatcher|2002|p=342}} Beyond the first row, the higher homotopy groups ({{math|''i'' > ''n''}}) appear to be chaotic, but in fact there are many patterns, some obvious and some very subtle. * The groups below the jagged black line are constant along the diagonals (as indicated by the red, green and blue coloring). * Most of the groups are finite. The only infinite groups are either on the main diagonal or immediately above the jagged line (highlighted in yellow). * The second and third rows of the table are the same starting in the third column (i.e., {{math|π<sub>''i''</sub>(''S<sup>2</sup>'') {{=}} π<sub>''i''</sub>(''S<sup>3</sup>'')}} for {{math| ''i'' ≥ 3}}). This isomorphism is induced by the Hopf fibration {{math| ''S''<sup>3</sup> → ''S''<sup>2</sup>}}. * For {{math|1=''n'' = 2, 3, 4, 5}} and {{math|''i'' ≥ ''n''}} the homotopy groups {{math|π<sub>''i''</sub>(''S''<sup>''n''</sup>)}} do not vanish. However, {{math|1=π<sub>''n''+4</sub>(''S''<sup>''n''</sup>) = 0}} for {{math|''n'' ≥ 6}}. These patterns follow from many different theoretical results.{{cn|date=February 2022}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)