Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Image (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == {{See also|List of set identities and relations#Functions and sets}} {| class=wikitable style="float:right;" |+ ! Counter-examples based on the [[real number]]s <math>\R,</math><BR> <math>f : \R \to \R</math> defined by <math>x \mapsto x^2,</math><BR> showing that equality generally need<BR>not hold for some laws: |- |[[File:Image preimage conterexample intersection.gif|thumb|center|upright=1.2|Image showing non-equal sets: <math>f\left(A \cap B\right) \subsetneq f(A) \cap f(B).</math> The sets <math>A = [-4, 2]</math> and <math>B = [-2, 4]</math> are shown in {{color|blue|blue}} immediately below the <math>x</math>-axis while their intersection <math>A_3 = [-2, 2]</math> is shown in {{color|green|green}}.]] |- |[[File:Image preimage conterexample bf.gif|thumb|center|upright=1.2|<math>f\left(f^{-1}\left(B_3\right)\right) \subsetneq B_3.</math>]] |- |[[File:Image preimage conterexample fb.gif|thumb|center|upright=1.2|<math>f^{-1}\left(f\left(A_4\right)\right) \supsetneq A_4.</math>]] |} === General === For every function <math>f : X \to Y</math> and all subsets <math>A \subseteq X</math> and <math>B \subseteq Y,</math> the following properties hold: {| class="wikitable" |- ! Image ! Preimage |- |<math>f(X) \subseteq Y</math> |<math>f^{-1}(Y) = X</math> |- |<math>f\left(f^{-1}(Y)\right) = f(X)</math> |<math>f^{-1}(f(X)) = X</math> |- |<math>f\left(f^{-1}(B)\right) \subseteq B</math><br>(equal if <math>B \subseteq f(X);</math> for instance, if <math>f</math> is surjective)<ref name="halmos-1960-p31">See {{harvnb|Halmos|1960|p=31}}</ref><ref name="munkres-2000-p19">See {{harvnb|Munkres|2000|p=19}}</ref> |<math>f^{-1}(f(A)) \supseteq A</math><br>(equal if <math>f</math> is injective)<ref name="halmos-1960-p31"/><ref name="munkres-2000-p19" /> |- |<math>f(f^{-1}(B)) = B \cap f(X)</math> |<math>\left(f \vert_A\right)^{-1}(B) = A \cap f^{-1}(B)</math> |- |<math>f\left(f^{-1}(f(A))\right) = f(A)</math> |<math>f^{-1}\left(f\left(f^{-1}(B)\right)\right) = f^{-1}(B)</math> |- |<math>f(A) = \varnothing \,\text{ if and only if }\, A = \varnothing</math> |<math>f^{-1}(B) = \varnothing \,\text{ if and only if }\, B \subseteq Y \setminus f(X)</math> |- |<math>f(A) \supseteq B \,\text{ if and only if } \text{ there exists } C \subseteq A \text{ such that } f(C) = B</math> |<math>f^{-1}(B) \supseteq A \,\text{ if and only if }\, f(A) \subseteq B</math> |- |<math>f(A) \supseteq f(X \setminus A) \,\text{ if and only if }\, f(A) = f(X)</math> |<math>f^{-1}(B) \supseteq f^{-1}(Y \setminus B) \,\text{ if and only if }\, f^{-1}(B) = X</math> |- |<math>f(X \setminus A) \supseteq f(X) \setminus f(A)</math> |<math>f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)</math><ref name="halmos-1960-p31" /> |- |<math>f\left(A \cup f^{-1}(B)\right) \subseteq f(A) \cup B</math><ref name="lee-2010-p388">See p.388 of Lee, John M. (2010). Introduction to Topological Manifolds, 2nd Ed.</ref> |<math>f^{-1}(f(A) \cup B) \supseteq A \cup f^{-1}(B)</math><ref name="lee-2010-p388" /> |- |<math>f\left(A \cap f^{-1}(B)\right) = f(A) \cap B</math><ref name="lee-2010-p388" /> |<math>f^{-1}(f(A) \cap B) \supseteq A \cap f^{-1}(B)</math><ref name="lee-2010-p388" /> |} Also: * <math>f(A) \cap B = \varnothing \,\text{ if and only if }\, A \cap f^{-1}(B) = \varnothing</math> === Multiple functions === For functions <math>f : X \to Y</math> and <math>g : Y \to Z</math> with subsets <math>A \subseteq X</math> and <math>C \subseteq Z,</math> the following properties hold: * <math>(g \circ f)(A) = g(f(A))</math> * <math>(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))</math> === Multiple subsets of domain or codomain === For function <math>f : X \to Y</math> and subsets <math>A, B \subseteq X</math> and <math>S, T \subseteq Y,</math> the following properties hold: {| class="wikitable" |- ! Image ! Preimage |- |<math>A \subseteq B \,\text{ implies }\, f(A) \subseteq f(B)</math> |<math>S \subseteq T \,\text{ implies }\, f^{-1}(S) \subseteq f^{-1}(T)</math> |- |<math>f(A \cup B) = f(A) \cup f(B)</math><ref name="lee-2010-p388" /><ref name="kelley-1985">{{harvnb|Kelley|1985|p=[{{Google books|plainurl=y|id=-goleb9Ov3oC|page=85|text=The image of the union of a family of subsets of X is the union of the images, but, in general, the image of the intersection is not the intersection of the images}} 85]}}</ref> |<math>f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)</math> |- |<math>f(A \cap B) \subseteq f(A) \cap f(B)</math><ref name="lee-2010-p388" /><ref name="kelley-1985" /><br>(equal if <math>f</math> is injective<ref name="munkres-2000-p21">See {{harvnb|Munkres|2000|p=21}}</ref>) |<math>f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)</math> |- |<math>f(A \setminus B) \supseteq f(A) \setminus f(B)</math><ref name="lee-2010-p388" /><br>(equal if <math>f</math> is injective<ref name="munkres-2000-p21" />) |<math>f^{-1}(S \setminus T) = f^{-1}(S) \setminus f^{-1}(T)</math><ref name="lee-2010-p388" /> |- |<math>f\left(A \triangle B\right) \supseteq f(A) \triangle f(B)</math><br>(equal if <math>f</math> is injective) |<math>f^{-1}\left(S \triangle T\right) = f^{-1}(S) \triangle f^{-1}(T)</math> |- |} The results relating images and preimages to the ([[Boolean algebra (structure)|Boolean]]) algebra of [[Intersection (set theory)|intersection]] and [[Union (set theory)|union]] work for any collection of subsets, not just for pairs of subsets: * <math>f\left(\bigcup_{s\in S}A_s\right) = \bigcup_{s\in S} f\left(A_s\right)</math> * <math>f\left(\bigcap_{s\in S}A_s\right) \subseteq \bigcap_{s\in S} f\left(A_s\right)</math> * <math>f^{-1}\left(\bigcup_{s\in S}B_s\right) = \bigcup_{s\in S} f^{-1}\left(B_s\right)</math> * <math>f^{-1}\left(\bigcap_{s\in S}B_s\right) = \bigcap_{s\in S} f^{-1}\left(B_s\right)</math> (Here, <math>S</math> can be infinite, even [[uncountably infinite]].) With respect to the algebra of subsets described above, the inverse image function is a [[lattice homomorphism]], while the image function is only a [[semilattice]] homomorphism (that is, it does not always preserve intersections).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)