Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Baer's criterion=== In Baer's original paper, he proved a useful result, usually known as Baer's Criterion, for checking whether a module is injective: a left ''R''-module ''Q'' is injective if and only if any homomorphism ''g'' : ''I'' β ''Q'' defined on a [[ideal (ring theory)|left ideal]] ''I'' of ''R'' can be extended to all of ''R''. Using this criterion, one can show that '''Q''' is an injective [[abelian group]] (i.e. an injective module over '''Z'''). More generally, an abelian group is injective if and only if it is [[divisible module|divisible]]. More generally still: a module over a [[principal ideal domain]] is injective if and only if it is divisible (the case of vector spaces is an example of this theorem, as every field is a principal ideal domain and every vector space is divisible). Over a general integral domain, we still have one implication: every injective module over an integral domain is divisible. Baer's criterion has been refined in many ways {{harv|Golan|Head|1991|p=119}}, including a result of {{harv|Smith|1981}} and {{harv|VΓ‘mos|1983}} that for a commutative Noetherian ring, it suffices to consider only [[prime ideal]]s ''I''. The dual of Baer's criterion, which would give a test for projectivity, is false in general. For instance, the '''Z'''-module '''Q''' satisfies the dual of Baer's criterion but is not projective.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)