Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Invertible matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cayley–Hamilton method === The [[Cayley–Hamilton theorem]] allows the inverse of {{math|'''A'''}} to be expressed in terms of {{math|det('''A''')}}, traces and powers of {{math|'''A'''}}:<ref>A proof can be found in the Appendix B of {{cite journal | last1 = Kondratyuk | first1 = L. A. | last2 = Krivoruchenko | first2 = M. I. | year = 1992 | title = Superconducting quark matter in SU(2) color group | url = https://www.researchgate.net/publication/226920070 | journal = Zeitschrift für Physik A | volume = 344 | issue = 1 | pages = 99–115 | doi = 10.1007/BF01291027 | bibcode = 1992ZPhyA.344...99K | s2cid = 120467300 }}</ref> : <math>\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \sum_{s=0}^{n-1} \mathbf{A}^s \sum_{k_1,k_2,\ldots,k_{n-1}} \prod_{l=1}^{n-1} \frac{(-1)^{k_l + 1}}{l^{k_l}k_l!} \operatorname{tr}\left(\mathbf{A}^l\right)^{k_l},</math> where {{mvar|n}} is size of {{math|'''A'''}}, and {{math|tr('''A''')}} is the [[trace (linear algebra)|trace]] of matrix {{math|'''A'''}} given by the sum of the [[main diagonal]]. The sum is taken over {{mvar|s}} and the sets of all <math>k_l \geq 0</math> satisfying the linear [[Diophantine equation]] : <math>s + \sum_{l=1}^{n-1} lk_l = n - 1.</math> The formula can be rewritten in terms of complete [[Bell polynomials]] of arguments <math>t_l = - (l - 1)! \operatorname{tr}\left(A^l\right)</math> as : <math>\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \sum_{s=1}^n \mathbf{A}^{s-1} \frac{(-1)^{n - 1}}{(n - s)!} B_{n-s}(t_1, t_2, \ldots, t_{n-s}).</math> That is described in more detail under [[Cayley–Hamilton theorem#Determinant and inverse matrix|Cayley–Hamilton method]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)