Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Thomson's solution - point force in an infinite isotropic medium ===== Thomson's solution or Kelvin's solution is the most important solution of the Navier–Cauchy or elastostatic equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by [[William Thomson, 1st Baron Kelvin|William Thomson]] (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of [[Coulomb's law]] in [[electrostatics]]. A derivation is given in Landau & Lifshitz.<ref name="LL">{{cite book |title=Theory of Elasticity |edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz |year=1986 |publisher=Butterworth Heinemann |location=Oxford, England |isbn=0-7506-2633-X}}</ref>{{rp|§8}} Defining <math display="block">a = 1-2\nu</math> <math display="block">b = 2(1-\nu) = a+1</math> where <math>\nu</math> is Poisson's ratio, the solution may be expressed as <math display="block">u_i = G_{ik} F_k</math> where <math>F_k</math> is the force vector being applied at the point, and <math>G_{ik}</math> is a tensor [[Green's function]] which may be written in [[Cartesian coordinates]] as: <math display="block">G_{ik} = \frac{1}{4\pi\mu r} \left[ \left(1 - \frac{1}{2b}\right) \delta_{ik} + \frac{1}{2b} \frac{x_i x_k}{r^2} \right]</math> It may be also compactly written as: <math display="block">G_{ik} = \frac{1}{4\pi\mu} \left[\frac{\delta_{ik}}{r} - \frac{1}{2b} \frac{\partial^2 r}{\partial x_i \partial x_k}\right]</math> and it may be explicitly written as: <math display="block">G_{ik}=\frac{1}{4\pi\mu r} \begin{bmatrix} 1-\frac{1}{2b}+\frac{1}{2b}\frac{x^2}{r^2} & \frac{1}{2b}\frac{xy} {r^2} & \frac{1}{2b}\frac{xz} {r^2} \\ \frac{1}{2b}\frac{yx} {r^2} & 1-\frac{1}{2b}+\frac{1}{2b}\frac{y^2}{r^2} & \frac{1}{2b}\frac{yz} {r^2} \\ \frac{1}{2b}\frac{zx} {r^2} & \frac{1}{2b}\frac{zy} {r^2} & 1-\frac{1}{2b}+\frac{1}{2b}\frac{z^2}{r^2} \end{bmatrix}</math> In cylindrical coordinates (<math>\rho,\phi,z\,\!</math>) it may be written as: <math display="block">G_{ik} = \frac{1}{4\pi \mu r} \begin{bmatrix} 1 - \frac{1}{2b} \frac{z^2}{r^2} & 0 & \frac{1}{2b} \frac{\rho z}{r^2}\\ 0 & 1 - \frac{1}{2b} & 0\\ \frac{1}{2b} \frac{z \rho}{r^2}& 0 & 1 - \frac{1}{2b} \frac{\rho^2}{r^2} \end{bmatrix}</math> where {{mvar|r}} is total distance to point. It is particularly helpful to write the displacement in cylindrical coordinates for a point force <math>F_z</math> directed along the z-axis. Defining <math>\hat{\boldsymbol{\rho}}</math> and <math>\hat{\mathbf{z}}</math> as unit vectors in the <math>\rho</math> and <math>z</math> directions respectively yields: <math display="block">\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right]</math> It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/''r'' for large ''r''. There is also an additional ρ-directed component. ======Frequency domain Green's function====== Rewrite the Navier-Cauchy equations in component form<ref>{{cite web |last=Bouchbinder |first=Eran |title= Linear Elasticity I (Non‑Equilibrium Continuum Physics)|url=https://www.weizmann.ac.il/chembiophys/bouchbinder/sites/chemphys.bouchbinder/files/uploads/Courses/2021/TAs/TA4-Linear_elasticity-I.pdf |website=Weizmann Institute of Science |publisher=Department of Chemical and Biological Physics |date=5 May 2021 |format=PDF |access-date=20 May 2025}}</ref> <math display="block">(\lambda + \mu)\partial_i \partial_j u_j +\mu\partial_j\partial_j u_i =-F_i</math> Convert this to frequency domain, where derivative <math> \partial_i</math> maps to <math>\sqrt{-1}q_i</math>, where <math>q</math> is the wave vector <math display="block">(\lambda + \mu)q_i q_j u_j +\mu|q|^2u_i =F_i</math> Spatial frequency domain force to displacement Green's function is the inverse of the above <math>G_{ij}(q) = \frac{1}{\mu}\bigg[\frac{\delta_{ij}}{|q|^2} -\frac{1}{b}\frac{q_iq_j}{|q|^4}\bigg]</math> The stress to strain Green's function <math>\Gamma</math> is<ref>{{cite journal | last=Moulinec | first=H. | last2=Suquet | first2=P. | title=A fast numerical method for computing the linear and nonlinear mechanical properties of composites | journal=Comptes Rendus de l’Académie des Sciences II | volume=318 | pages=1417–1423 | year=1994 | url=https://lma-software-craft.cnrs.fr/wp-content/uploads/2020/11/CRAS_Moulinec_Suquet_1994.pdf | format=PDF | access-date=2025-05-17}}</ref> <math>\Gamma_{khij} = \frac{1}{4\mu |q|^2}(\delta_{ki}q_hq_j+\delta_{hi}q_kq_j+\delta_{kj}q_hq_i+\delta_{hj}q_kq_i) -\frac{\lambda+\mu}{\mu(\lambda+2\mu)}\frac{q_iq_jq_kq_h}{|q|^4}</math> where <math>\epsilon_{kh} = \Gamma_{khij}\sigma_{ij}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)