Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maximum principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== ===Research articles=== * Calabi, E. An extension of E. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J. 25 (1958), 45–56. * Cheng, S.Y.; Yau, S.T. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. * Gidas, B.; Ni, Wei Ming; Nirenberg, L. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209–243. * Gidas, B.; Ni, Wei Ming; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in {{math|R<sup>''n''</sup>}}. Mathematical analysis and applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981. * Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential Geom. 24 (1986), no. 2, 153–179. * E. Hopf. Elementare Bemerkungen Über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitber. Preuss. Akad. Wiss. Berlin 19 (1927), 147-152. * Hopf, Eberhard. A remark on linear elliptic differential equations of second order. Proc. Amer. Math. Soc. 3 (1952), 791–793. * Nirenberg, Louis. A strong maximum principle for parabolic equations. Comm. Pure Appl. Math. 6 (1953), 167–177. * Omori, Hideki. Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19 (1967), 205–214. * Yau, Shing Tung. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–228. * Kreyberg, H. J. A. On the maximum principle of optimal control in economic processes, 1969 (Trondheim, NTH, Sosialøkonomisk institutt https://www.worldcat.org/title/on-the-maximum-principle-of-optimal-control-in-economic-processes/oclc/23714026) ===Textbooks=== *{{cite book |title=Fully Nonlinear Elliptic Equations |last=Caffarelli |first=Luis A. |authorlink=Luis Caffarelli |author2=Xavier Cabre |year=1995 |publisher=American Mathematical Society |location=Providence, Rhode Island |pages=31–41 |isbn=0-8218-0437-5}} * Evans, Lawrence C. Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp. {{ISBN|978-0-8218-4974-3}} * Friedman, Avner. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xiv+347 pp. * Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp. {{ISBN|3-540-41160-7}} * [[Olga Ladyzhenskaya|Ladyženskaja, O. A.]]; Solonnikov, V. A.; [[Nina Uraltseva|Uralʹceva, N. N.]] Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968 xi+648 pp. * [[Olga Ladyzhenskaya|Ladyzhenskaya, Olga A.]]; [[Nina Uraltseva|Ural'tseva, Nina N.]] Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London 1968 xviii+495 pp. * Lieberman, Gary M. Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1996. xii+439 pp. {{ISBN|981-02-2883-X}} * Morrey, Charles B., Jr. Multiple integrals in the calculus of variations. Reprint of the 1966 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2008. x+506 pp. {{ISBN|978-3-540-69915-6}} * Protter, Murray H.; Weinberger, Hans F. Maximum principles in differential equations. Corrected reprint of the 1967 original. Springer-Verlag, New York, 1984. x+261 pp. {{ISBN|0-387-96068-6}} *{{cite book | last = Rockafellar | first = R. T.|authorlink=R. Tyrrell Rockafellar | title = Convex analysis | publisher = Princeton University Press | date = 1970 | location = Princeton }} * Smoller, Joel. Shock waves and reaction-diffusion equations. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 258. Springer-Verlag, New York, 1994. xxiv+632 pp. {{ISBN|0-387-94259-9}} [[Category:Harmonic functions]] [[Category:Partial differential equations]] [[Category:Mathematical principles]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)