Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Raising and lowering indices=== {{See also|Raising and lowering indices}} In a basis of vector fields {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}}, any smooth tangent vector field {{mvar|X}} can be written in the form {{NumBlk|:|<math>X = v^1[\mathbf{f}]X_1 + v^2 [\mathbf{f}]X_2 + \dots + v^n[\mathbf{f}]X_n = \mathbf{f} \begin{bmatrix}v^1[\mathbf{f}] \\ v^2[\mathbf{f}] \\ \vdots \\ v^n[\mathbf{f}]\end{bmatrix} = \mathbf{f} v[\mathbf{f}] </math>|{{EquationRef|7}}}} for some uniquely determined smooth functions {{math|''v''<sup>1</sup>, ..., ''v''<sup>''n''</sup>}}. Upon changing the basis {{math|'''f'''}} by a nonsingular matrix {{mvar|A}}, the coefficients {{math|''v''<sup>''i''</sup>}} change in such a way that equation ({{EquationNote|7}}) remains true. That is, :<math>X = \mathbf{fA}v[\mathbf{fA}] = \mathbf{f}v[\mathbf{f}]\,.</math> Consequently, {{math|''v''['''f'''''A''] {{=}} ''A''<sup>−1</sup>''v''['''f''']}}. In other words, the components of a vector transform ''contravariantly'' (that is, inversely or in the opposite way) under a change of basis by the nonsingular matrix {{mvar|A}}. The contravariance of the components of {{math|''v''['''f''']}} is notationally designated by placing the indices of {{math|''v''<sup>''i''</sup>['''f''']}} in the upper position. A frame also allows covectors to be expressed in terms of their components. For the basis of vector fields {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}} define the [[dual basis]] to be the [[linear functional]]s {{math|(''θ''<sup>1</sup>['''f'''], ..., ''θ''<sup>''n''</sup>['''f'''])}} such that :<math>\theta^i[\mathbf{f}](X_j) = \begin{cases} 1 & \mathrm{if}\ i=j\\ 0&\mathrm{if}\ i\not=j.\end{cases}</math> That is, {{math|''θ''<sup>''i''</sup>['''f'''](''X''<sub>''j''</sub>) {{=}} ''δ''<sub>''j''</sub><sup>''i''</sup>}}, the [[Kronecker delta]]. Let :<math>\theta[\mathbf{f}] = \begin{bmatrix}\theta^1[\mathbf{f}] \\ \theta^2[\mathbf{f}] \\ \vdots \\ \theta^n[\mathbf{f}]\end{bmatrix}.</math> Under a change of basis {{math|'''f''' ↦ '''f'''''A''}} for a nonsingular matrix {{math|''A''}}, {{math|''θ''['''f''']}} transforms via :<math>\theta[\mathbf{f}A] = A^{-1}\theta[\mathbf{f}].</math> Any linear functional {{mvar|α}} on tangent vectors can be expanded in terms of the dual basis {{mvar|θ}} {{NumBlk|:|<math>\begin{align} \alpha &= a_1[\mathbf{f}] \theta^1[\mathbf{f}] + a_2[\mathbf{f}] \theta^2[\mathbf{f}] + \cdots + a_n[\mathbf{f}] \theta^n[\mathbf{f}] \\[8pt] &= \big\lbrack\begin{array}{cccc}a_1[\mathbf{f}] & a_2[\mathbf{f}] & \dots & a_n[\mathbf{f}]\end{array}\big\rbrack \theta[\mathbf{f}] \\[8pt] &= a[\mathbf{f}] \theta[\mathbf{f}] \end{align}</math>|{{EquationRef|8}}}} where {{math|''a''['''f''']}} denotes the [[row vector]] {{math|[ ''a''<sub>1</sub>['''f'''] ... ''a''<sub>''n''</sub>['''f'''] ]}}. The components {{math|''a''<sub>''i''</sub>}} transform when the basis {{math|'''f'''}} is replaced by {{math|'''f'''''A''}} in such a way that equation ({{EquationNote|8}}) continues to hold. That is, :<math>\alpha = a[\mathbf{f}A]\theta[\mathbf{f}A] = a[\mathbf{f}]\theta[\mathbf{f}]</math> whence, because {{math|''θ''['''f'''''A''] {{=}} ''A''<sup>−1</sup>''θ''['''f''']}}, it follows that {{math|1=''a''['''f'''''A''] {{=}} ''a''['''f''']''A''}}. That is, the components {{mvar|a}} transform ''covariantly'' (by the matrix {{mvar|A}} rather than its inverse). The covariance of the components of {{math|''a''['''f''']}} is notationally designated by placing the indices of {{math|''a''<sub>''i''</sub>['''f''']}} in the lower position. Now, the metric tensor gives a means to identify vectors and covectors as follows. Holding {{math|''X''<sub>''p''</sub>}} fixed, the function :<math>g_p(X_p, -) : Y_p \mapsto g_p(X_p, Y_p)</math> of tangent vector {{math|''Y''<sub>''p''</sub>}} defines a [[linear functional]] on the tangent space at {{mvar|p}}. This operation takes a vector {{math|''X''<sub>''p''</sub>}} at a point {{mvar|p}} and produces a covector {{math|''g''<sub>''p''</sub>(''X''<sub>''p''</sub>, −)}}. In a basis of vector fields {{math|'''f'''}}, if a vector field {{mvar|X}} has components {{math|''v''['''f''']}}, then the components of the covector field {{math|''g''(''X'', −)}} in the dual basis are given by the entries of the row vector :<math>a[\mathbf{f}] = v[\mathbf{f}]^\mathsf{T} G[\mathbf{f}].</math> Under a change of basis {{math|'''f''' ↦ '''f'''''A''}}, the right-hand side of this equation transforms via :<math> v[\mathbf{f}A]^\mathsf{T} G[\mathbf{f}A] = v[\mathbf{f}]^\mathsf{T} \left(A^{-1}\right)^\mathsf{T} A^\mathsf{T} G[\mathbf{f}]A = v[\mathbf{f}]^\mathsf{T} G[\mathbf{f}]A </math> so that {{math|''a''['''f'''''A''] {{=}} ''a''['''f''']''A''}}: {{mvar|a}} transforms covariantly. The operation of associating to the (contravariant) components of a vector field {{math|''v''['''f'''] {{=}} [ ''v''<sup>1</sup>['''f'''] ''v''<sup>2</sup>['''f'''] ... ''v''<sup>''n''</sup>['''f'''] ]}}<sup>T</sup> the (covariant) components of the covector field {{math|''a''['''f'''] {{=}} [ ''a''<sub>1</sub>['''f'''] ''a''<sub>2</sub>['''f'''] … ''a''<sub>''n''</sub>['''f'''] ]}}, where :<math>a_i[\mathbf{f}] = \sum_{k=1}^n v^k[\mathbf{f}]g_{ki}[\mathbf{f}]</math> is called '''lowering the index'''. To ''raise the index'', one applies the same construction but with the inverse metric instead of the metric. If {{math|''a''['''f'''] {{=}} [ ''a''<sub>1</sub>['''f'''] ''a''<sub>2</sub>['''f'''] ... ''a''<sub>''n''</sub>['''f'''] ]}} are the components of a covector in the dual basis {{math|''θ''['''f''']}}, then the column vector {{NumBlk|:|<math>v[\mathbf{f}] = G^{-1}[\mathbf{f}]a[\mathbf{f}]^\mathsf{T}</math>|{{EquationRef|9}}}} has components which transform contravariantly: :<math>v[\mathbf{f}A] = A^{-1}v[\mathbf{f}].</math> Consequently, the quantity {{math|''X'' {{=}} '''f'''''v''['''f''']}} does not depend on the choice of basis {{math|'''f'''}} in an essential way, and thus defines a vector field on {{mvar|M}}. The operation ({{EquationNote|9}}) associating to the (covariant) components of a covector {{math|''a''['''f''']}} the (contravariant) components of a vector {{math|''v''['''f''']}} given is called '''raising the index'''. In components, ({{EquationNote|9}}) is :<math>v^i[\mathbf{f}] = \sum_{k=1}^n g^{ik}[\mathbf{f}] a_k[\mathbf{f}].</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)