Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Non-coding DNA
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Repeat sequences, transposons and viral elements=== {{Main|Repeated sequence (DNA)}} [[File:Bacterial mobile elements.svg|thumb|upright=1.35|[[Mobile genetic elements]] in the cell (left) and how they can be acquired (right)]] [[Transposon]]s and [[retrotransposon]]s are [[mobile genetic elements]]. Retrotransposon [[Repeated sequence (DNA)|repeated sequences]], which include [[Retrotransposon#LINEs|long interspersed nuclear elements]] (LINEs) and [[Retrotransposon#SINEs|short interspersed nuclear elements]] (SINEs), account for a large proportion of the genomic sequences in many species. [[Alu sequence]]s, classified as a short interspersed nuclear element, are the most abundant mobile elements in the human genome. Some examples have been found of SINEs exerting transcriptional control of some protein-encoding genes.<ref>{{cite journal |vauthors=Ponicsan SL, Kugel JF, Goodrich JA |title=Genomic gems: SINE RNAs regulate mRNA production |journal=Current Opinion in Genetics & Development |volume=20 |issue=2 |pages=149–155 |date=April 2010 |pmid=20176473 |pmc=2859989 |doi=10.1016/j.gde.2010.01.004}}</ref><ref>{{cite journal |vauthors=Häsler J, Samuelsson T, Strub K |title=Useful 'junk': Alu RNAs in the human transcriptome |journal=Cellular and Molecular Life Sciences |volume=64 |issue=14 |pages=1793–1800 |date=July 2007 |pmid=17514354 |s2cid=5938630 |doi=10.1007/s00018-007-7084-0 |type=Submitted manuscript |url=https://archive-ouverte.unige.ch/unige:17489|pmc=11136058 }}</ref><ref>{{cite journal |vauthors=Walters RD, Kugel JF, Goodrich JA |title=InvAluable junk: the cellular impact and function of Alu and B2 RNAs |journal=IUBMB Life |volume=61 |issue=8 |pages=831–837 |date=August 2009 |pmid=19621349 |pmc=4049031 |doi=10.1002/iub.227}}</ref> [[Endogenous retrovirus]] sequences are the product of [[reverse transcription]] of [[retrovirus]] genomes into the genomes of [[germ cell]]s. Mutation within these retro-transcribed sequences can inactivate the viral genome.<ref>{{cite journal | vauthors = Nelson PN, Hooley P, Roden D, Davari Ejtehadi H, Rylance P, Warren P, Martin J, Murray PG | display-authors = 6 | title = Human endogenous retroviruses: transposable elements with potential? | journal = Clinical and Experimental Immunology | volume = 138 | issue = 1 | pages = 1–9 | date = October 2004 | pmid = 15373898 | pmc = 1809191 | doi = 10.1111/j.1365-2249.2004.02592.x }}</ref> Over 8% of the human genome is made up of (mostly decayed) endogenous retrovirus sequences, as part of the over 42% fraction that is recognizably derived of retrotransposons, while another 3% can be identified to be the remains of [[Transposon#DNA transposons|DNA transposon]]s. Much of the remaining half of the genome that is currently without an explained origin is expected to have found its origin in transposable elements that were active so long ago (> 200 million years) that random mutations have rendered them unrecognizable.<ref name=humangenome>{{cite journal | vauthors = Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J | display-authors = 6 | title = Initial sequencing and analysis of the human genome | journal = Nature | volume = 409 | issue = 6822 | pages = 860–921 | date = February 2001 | pmid = 11237011 | doi = 10.1038/35057062 | doi-access = free | bibcode = 2001Natur.409..860L | hdl = 2027.42/62798 | hdl-access = free }}</ref> Genome size variation in at least two kinds of plants is mostly the result of retrotransposon sequences.<ref>{{cite journal | vauthors = Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O | display-authors = 6 | title = Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice | journal = Genome Research | volume = 16 | issue = 10 | pages = 1262–1269 | date = October 2006 | pmid = 16963705 | pmc = 1581435 | doi = 10.1101/gr.5290206 }}</ref><ref>{{cite journal | vauthors = Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF | title = Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium | journal = Genome Research | volume = 16 | issue = 10 | pages = 1252–1261 | date = October 2006 | pmid = 16954538 | pmc = 1581434 | doi = 10.1101/gr.5282906 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)