Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
P versus NP problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===P β NP=== A proof of P β NP would lack the practical computational benefits of a proof that P = NP, but would represent a great advance in computational complexity theory and guide future research. It would demonstrate that many common problems cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions or solutions to other problems. Due to widespread belief in P β NP, much of this focusing of research has already taken place.<ref>{{Cite journal |title=The Heuristic Problem-Solving Approach |author=L. R. Foulds |journal=[[Journal of the Operational Research Society]] |volume=34 |issue=10 |date=October 1983 |pages=927β934 |jstor=2580891 |doi=10.2307/2580891}}</ref> P β NP still leaves open the [[average-case complexity]] of hard problems in NP. For example, it is possible that SAT requires exponential time in the worst case, but that almost all randomly selected instances of it are efficiently solvable. [[Russell Impagliazzo]] has described five hypothetical "worlds" that could result from different possible resolutions to the average-case complexity question.<ref>R. Impagliazzo, [http://cseweb.ucsd.edu/~russell/average.ps "A personal view of average-case complexity"], p. 134, 10th Annual Structure in Complexity Theory Conference (SCT'95), 1995.</ref> These range from "Algorithmica", where P = NP and problems like SAT can be solved efficiently in all instances, to "Cryptomania", where P β NP and generating hard instances of problems outside P is easy, with three intermediate possibilities reflecting different possible distributions of difficulty over instances of NP-hard problems. The "world" where P β NP but all problems in NP are tractable in the average case is called "Heuristica" in the paper. A [[Princeton University]] workshop in 2009 studied the status of the five worlds.<ref>{{Cite web |url = http://intractability.princeton.edu/blog/2009/05/program-for-workshop-on-impagliazzos-worlds/ |title = Tentative program for the workshop on "Complexity and Cryptography: Status of Impagliazzo's Worlds" |archive-url = https://web.archive.org/web/20131115034042/http://intractability.princeton.edu/blog/2009/05/program-for-workshop-on-impagliazzos-worlds/ |archive-date = 2013-11-15}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)