Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial fraction decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Example 1 === <math display="block">f(x)=\frac{1}{x^2+2x-3}</math> Here, the denominator splits into two distinct linear factors: <math display="block">q(x)=x^2+2x-3=(x+3)(x-1)</math> so we have the partial fraction decomposition <math display="block">f(x)=\frac{1}{x^2+2x-3} =\frac{A}{x+3}+\frac{B}{x-1}</math> Multiplying through by the denominator on the left-hand side gives us the polynomial identity <math display="block">1=A(x-1)+B(x+3)</math> Substituting ''x'' = β3 into this equation gives ''A'' = β1/4, and substituting ''x'' = 1 gives ''B'' = 1/4, so that <math display="block">f(x) =\frac{1}{x^2+2x-3} =\frac{1}{4}\left(\frac{-1}{x+3}+\frac{1}{x-1}\right)</math> === Example 2 === <math display="block">f(x)=\frac{x^3+16}{x^3-4x^2+8x}</math> After [[Polynomial long division|long division]], we have <math display="block">f(x)=1+\frac{4x^2-8x+16}{x^3-4x^2+8x}=1+\frac{4x^2-8x+16}{x(x^2-4x+8)}</math> The factor ''x''<sup>2</sup> β 4''x'' + 8 is irreducible over the reals, as its [[discriminant]] {{math|1=(β4)<sup>2</sup> β 4Γ8 = β16}} is negative. Thus the partial fraction decomposition over the reals has the shape <math display="block">\frac{4x^2-8x+16}{x(x^2-4x+8)}=\frac{A}{x}+\frac{Bx+C}{x^2-4x+8}</math> Multiplying through by ''x''<sup>3</sup> β 4''x''<sup>2</sup> + 8''x'', we have the polynomial identity <math display="block">4x^2-8x+16 = A \left(x^2-4x+8\right) + \left(Bx+C\right)x</math> Taking ''x'' = 0, we see that 16 = 8''A'', so ''A'' = 2. Comparing the ''x''<sup>2</sup> coefficients, we see that 4 = ''A'' + ''B'' = 2 + ''B'', so ''B'' = 2. Comparing linear coefficients, we see that β8 = β4''A'' + ''C'' = β8 + ''C'', so ''C'' = 0. Altogether, <math display="block">f(x)=1+2\left(\frac{1}{x}+\frac{x}{x^2-4x+8}\right)</math> The fraction can be completely decomposed using [[complex numbers]]. According to the [[fundamental theorem of algebra]] every complex polynomial of degree ''n'' has ''n'' (complex) roots (some of which can be repeated). The second fraction can be decomposed to: <math display="block">\frac{x}{x^2-4x+8}=\frac{D}{x-(2+2i)}+\frac{E}{x-(2-2i)}</math> Multiplying through by the denominator gives: <math display="block">x=D(x-(2-2i))+E(x-(2+2i)) </math> Equating the coefficients of {{math|''x''}} and the constant (with respect to {{math|''x''}}) coefficients of both sides of this equation, one gets a system of two linear equations in {{math|''D''}} and {{math|''E''}}, whose solution is <math display="block">D=\frac{1+i}{2i}=\frac{1-i}{2}, \qquad E=\frac{1-i}{-2i}=\frac{1+i}{2}.</math> Thus we have a complete decomposition: <math display="block">f(x)=\frac{x^3+16}{x^3-4x^2+8x}=1+\frac{2}{x}+\frac{1-i}{x-(2+2i)}+\frac{1+i}{x-(2-2i)}</math> One may also compute directly {{math|''A'', ''D''}} and {{math|''E''}} with the residue method (see also example 4 below). === Example 3 === This example illustrates almost all the "tricks" we might need to use, short of consulting a [[computer algebra system]]. <math display="block">f(x)=\frac{x^9-2x^6+2x^5-7x^4+13x^3-11x^2+12x-4}{x^7-3x^6+5x^5-7x^4+7x^3-5x^2+3x-1}</math> After [[Polynomial long division|long division]] and [[polynomial factorization|factoring]] the denominator, we have <math display="block">f(x)=x^2+3x+4+\frac{2x^6-4x^5+5x^4-3x^3+x^2+3x}{(x-1)^3(x^2+1)^2}</math> The partial fraction decomposition takes the form <math display="block">\frac{2x^6-4x^5+5x^4-3x^3+x^2+3x}{(x-1)^3(x^2+1)^2} = \frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{(x-1)^3}+\frac{Dx+E}{x^2+1}+\frac{Fx+G}{(x^2+1)^2}.</math> Multiplying through by the denominator on the left-hand side we have the polynomial identity <math display="block">\begin{align} &2x^6 - 4x^5 + 5x^4 - 3x^3 + x^2 + 3x \\[4pt] ={}&A\left(x-1\right)^2 \left(x^2+1\right)^2+B\left(x-1\right)\left(x^2+1\right)^2 +C\left(x^2+1\right)^2 + \left(Dx+E\right)\left(x-1\right)^3\left(x^2+1\right)+\left(Fx+G\right)\left(x-1\right)^3 \end{align}</math> Now we use different values of ''x'' to compute the coefficients: <math display="block">\begin{cases} 4 = 4C & x =1 \\ 2 + 2i = (Fi + G) (2+ 2i) & x = i \\ 0 = A- B +C - E - G & x = 0 \end{cases}</math> Solving this we have: <math display="block">\begin{cases} C = 1 \\ F =0, G =1 \\ E = A-B\end{cases}</math> Using these values we can write: <math display="block">\begin{align} &2x^6-4x^5+5x^4-3x^3+x^2+3x \\[4pt] ={}& A\left(x-1\right)^2 \left(x^2+1\right)^2 + B\left(x-1\right)\left(x^2+1\right)^2 + \left(x^2 + 1\right)^2 + \left(Dx + \left(A-B\right)\right)\left(x-1\right)^3 \left(x^2+1\right) + \left(x-1\right)^3 \\[4pt] ={}& \left(A + D\right) x^6 + \left(-A - 3D\right) x^5 + \left(2B + 4D + 1\right) x^4 + \left(-2B - 4D + 1\right) x^3 + \left(-A + 2B + 3D - 1\right) x^2 + \left(A - 2B - D + 3\right) x \end{align}</math> We compare the coefficients of ''x''<sup>6</sup> and ''x''<sup>5</sup> on both side and we have: <math display="block">\begin{cases} A+D=2 \\ -A-3D = -4 \end{cases} \quad \Rightarrow \quad A= D = 1.</math> Therefore: <math display="block">2x^6-4x^5+5x^4-3x^3+x^2+3x = 2x^6 -4x^5 + (2B + 5) x^4 + (-2B - 3) x^3 + (2B +1) x^2 + (- 2B + 3) x</math> which gives us ''B'' = 0. Thus the partial fraction decomposition is given by: <math display="block">f(x)=x^2+3x+4+\frac{1}{(x-1)} + \frac{1}{(x - 1)^3} + \frac{x + 1}{x^2+1}+\frac{1}{(x^2+1)^2}.</math> Alternatively, instead of expanding, one can obtain other linear dependences on the coefficients computing some derivatives at <math>x = 1, \imath</math> in the above polynomial identity. (To this end, recall that the derivative at ''x'' = ''a'' of (''x'' β ''a'')<sup>''m''</sup>''p''(''x'') vanishes if ''m'' > 1 and is just ''p''(''a'') for ''m'' = 1.) For instance the first derivative at ''x'' = 1 gives <math display="block"> 2\cdot6-4\cdot5+5\cdot4-3\cdot3+2+3 = A\cdot(0+0) + B\cdot( 4+ 0) + 8 + D\cdot0 </math> that is 8 = 4''B'' + 8 so ''B'' = 0. ===Example 4 (residue method)=== <math display="block"> f(z)=\frac{z^{2}-5}{(z^2-1)(z^2+1)}=\frac{z^{2}-5}{(z+1)(z-1)(z+i)(z-i)}</math> Thus, ''f''(''z'') can be decomposed into rational functions whose denominators are ''z''+1, ''z''β1, ''z''+i, ''z''βi. Since each term is of power one, β1, 1, β''i'' and ''i'' are simple poles. Hence, the residues associated with each pole, given by <math display="block">\frac{P(z_i)}{Q'(z_i)} = \frac{z_i^2 - 5}{4z_i^3},</math> are <math display="block"> 1, -1, \tfrac{3i}{2}, -\tfrac{3i}{2},</math> respectively, and <math display="block"> f(z)=\frac{1}{z+1}-\frac{1}{z-1}+\frac{3i}{2}\frac{1}{z+i}-\frac{3i}{2}\frac{1}{z-i}. </math> ===Example 5 (limit method)=== [[Limit (mathematics)|Limits]] can be used to find a partial fraction decomposition.<ref>{{cite book|last=Bluman|first=George W.| title=Problem Book for First Year Calculus|year=1984|publisher=Springer-Verlag|location=New York|pages=250β251}}</ref> Consider the following example: <math display="block"> \frac{1}{x^3 - 1}</math> First, factor the denominator which determines the decomposition: <math display="block"> \frac{1}{x^3 - 1} = \frac{1}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}.</math> Multiplying everything by <math>x-1</math>, and taking the limit when <math>x \to 1</math>, we get <math display="block">\lim_{x \to 1} \left((x-1)\left ( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )\right) = \lim_{x \to 1} A + \lim_{x \to 1}\frac{(x-1)(Bx + C)}{x^2 + x + 1} =A.</math> On the other hand, <math display="block">\lim_{x \to 1} \frac{(x-1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1}\frac{1}{x^2 + x + 1} = \frac13,</math> and thus: <math display="block">A = \frac{1}{3}.</math> Multiplying by {{math|''x''}} and taking the limit when <math>x \to \infty</math>, we have <math display="block">\lim_{x \to \infty} x\left( \frac{A}{x-1} + \frac{Bx + C}{x^2 + x + 1} \right )= \lim_{x \to \infty} \frac{Ax}{x-1} + \lim_{x \to \infty} \frac{Bx^2+Cx}{x^2+x+1}= A+B,</math> and <math display="block">\lim_{x \to \infty} \frac{x}{(x - 1)(x^2 + x + 1)} =0.</math> This implies {{math|1=''A'' + ''B'' = 0}} and so <math>B = -\frac{1}{3}</math>. For {{math|1=''x'' = 0}}, we get <math>-1 = -A + C,</math> and thus <math>C = -\tfrac{2}{3}</math>. Putting everything together, we get the decomposition <math display="block">\frac{1}{x^3 -1} = \frac{1}{3} \left( \frac{1}{x - 1} + \frac{-x -2}{x^2 + x + 1} \right ).</math> ===Example 6 (integral)=== Suppose we have the indefinite [[integral]]: <math display="block">\int \frac{x^4+x^3+x^2+1}{x^2+x-2} \,dx</math> Before performing decomposition, it is obvious we must perform polynomial long division and [[Factorization|factor]] the denominator. Doing this would result in: <math display="block">\int \left(x^2 + 3 + \frac{-3x+7}{(x+2)(x-1)}\right) dx</math> Upon this, we may now perform partial fraction decomposition. <math display="block">\int \left(x^2+3+ \frac{-3x+7}{(x+2)(x-1)}\right) dx = \int \left(x^2+3+ \frac{A}{(x+2)}+\frac{B}{(x-1)}\right) dx</math> so: <math display="block">A(x-1)+B(x+2)=-3x+7</math>. Upon substituting our values, in this case, where x=1 to solve for B and x=-2 to solve for A, we will result in: <math display="block">A=\frac{-13}{3} \ , B=\frac{4}{3} </math> Plugging all of this back into our integral allows us to find the answer: <math display="block">\int \left(x^2+3+ \frac{-13/3}{(x+2)}+\frac{4/3}{(x-1)}\right) \,dx = \frac{x^3}{3} \ + 3x-\frac{13}{3} \ln(|x+2|)+\frac{4}{3} \ln(|x-1|)+C </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)