Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pauli matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relation to dot and cross product=== Pauli vectors elegantly map these commutation and anticommutation relations to corresponding vector products. Adding the commutator to the anticommutator gives :<math> \begin{align} \left[ \sigma_j, \sigma_k\right] + \{\sigma_j, \sigma_k\} &= (\sigma_j \sigma_k - \sigma_k \sigma_j ) + (\sigma_j \sigma_k + \sigma_k \sigma_j) \\ 2i\varepsilon_{j k \ell}\,\sigma_\ell + 2 \delta_{j k}I &= 2\sigma_j \sigma_k \end{align} </math> so that, {{Equation box 1 |indent =: |equation = <math>~~ \sigma_j \sigma_k = \delta_{j k}I + i\varepsilon_{j k \ell}\,\sigma_\ell ~ .~</math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7 }} [[tensor contraction|Contracting]] each side of the equation with components of two {{math|3}}-vectors {{math|''a{{sub|p}}''}} and {{math|''b{{sub|q}}''}} (which commute with the Pauli matrices, i.e., {{math|1=''a{{sub|p}}Ο{{sub|q}}'' = ''Ο{{sub|q}}a{{sub|p}}'')}} for each matrix {{math|''Ο{{sub|q}}''}} and vector component {{math|''a{{sub|p}}''}} (and likewise with {{math|''b{{sub|q}}''}}) yields :<math>~~ \begin{align} a_j b_k \sigma_j \sigma_k & = a_j b_k \left(i\varepsilon_{jk\ell}\,\sigma_\ell + \delta_{jk}I\right) \\ a_j \sigma_j b_k \sigma_k & = i\varepsilon_{jk\ell}\,a_j b_k \sigma_\ell + a_j b_k \delta_{jk}I \end{align}.~</math> Finally, translating the index notation for the [[dot product]] and [[cross product#Index notation for tensors|cross product]] results in {{NumBlk||{{Equation box 1 |indent =: |equation = <math>~~\Bigl(\vec{a} \cdot \vec{\sigma}\Bigr)\Bigl(\vec{b} \cdot \vec{\sigma}\Bigr) = \Bigl(\vec{a} \cdot \vec{b}\Bigr) \, I + i \Bigl(\vec{a} \times \vec{b}\Bigr) \cdot \vec{\sigma}~~</math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7 }} |{{EquationRef|1}} }} If {{mvar|i}} is identified with the pseudoscalar {{math|''Ο{{sub|x}}Ο{{sub|y}}Ο{{sub|z}}''}} then the right hand side becomes <math> a \cdot b + a \wedge b </math>, which is also the definition for the product of two vectors in geometric algebra. If we define the spin operator as {{math|1='''''J''''' = {{sfrac|''Δ§''|2}}'''''Ο'''''}}, then {{math|1='''''J'''''}} satisfies the commutation relation:<math display="block">\mathbf{J} \times \mathbf{J} = i\hbar \mathbf{J}</math>Or equivalently, the Pauli vector satisfies:<math display="block">\frac{\vec{\sigma}}{2} \times \frac{\vec{\sigma}}{2} = i\frac{\vec{\sigma}}{2}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)