Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime number theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Approximations for the ''n''th prime number == As a consequence of the prime number theorem, one gets an asymptotic expression for the {{mvar|n}}th prime number, denoted by {{math|''p''<sub>''n''</sub>}}: : <math>p_n \sim n \log n.</math><ref>{{cite web |title=Why is p<sub>n</sub> ∼ n ln(n)? |url=https://math.stackexchange.com/questions/1413167/why-is-p-n-sim-n-lnn |access-date=2024-10-11 |website=Mathematics Stack Exchange |language=en}}</ref> A better approximation is by [[Ernesto Cesàro|Cesàro]] (1894):<ref>{{cite journal|author-link=Ernesto Cesàro|first=Ernesto|last=Cesàro|year=1894|title=Sur une formule empirique de M. Pervouchine|journal=Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences|volume=119|pages=848–849|url=http://gallica.bnf.fr/ark:/12148/bpt6k30752|language=fr}}</ref> : <math> p_n = n B_2(\log n),\text{ where}</math> : <math> B_2(x) = x + \log x - 1 + \frac{\log x - 2}{x} - \frac{(\log x)^2 - 6 \log x + 11}{2x^2} + o\left(\frac 1{x^2}\right).</math> Again considering the {{val|2|e=17}}th prime number {{val|8512677386048191063}}, assuming the [[Little-o notation|trailing error term]] is zero gives an estimate of {{val|8512681315554715386}}; the first 5 digits match and relative error is about 0.46 [[parts per million]]. [[Michele Cipolla|Cipolla]] (1902)<ref>{{cite journal |title=La determinazione assintotica dell'n<sup>imo</sup> numero primo |trans-title=The asymptotic determination of the n<sup>th</sup> prime number |lang=it |first=Michele |last=Cipolla |author-link=Michele Cipolla |journal=Matematiche Napoli |series=8 |volume=3 |year=1902 |pages=132–166 }}</ref><ref name=Toulisse13>{{cite journal |title= The n-th prime asymptotically |first1=Juan |last1=Arias de Reyna |first2=Jérémy |last2=Toulisse |journal=Journal de théorie des nombres de Bordeaux |lang=en |volume=25 |issue=3 |year=2013 |pages=521–555 |doi=10.5802/jtnb.847 |doi-access=free |mr=3179675 |zbl=1298.11093 |arxiv=1203.5413 }}</ref> showed that these are the leading terms of an infinite series which may be truncated at arbitrary degree, with : <math>B_k(x) = x + \log x - 1 - \sum_{i=1}^k (-1)^i \frac{P_i(\log x)}{ix^i} + O\left(\frac{(\log x)^{k+1}}{x^{k+1}}\right),</math> where each {{math|''P<sub>i</sub>''}} is a degree-{{mvar|i}} monic polynomial. ({{math|1=''P''<sub>1</sub>(''y'') = ''y'' − 2}}, {{math|1=''P''<sub>2</sub>(''y'') = ''y''<sup>2</sup> − 6''y'' + 11}}, {{math|1=''P''<sub>3</sub>(''y'') = ''y''<sup>3</sup> − {{sfrac|21|2}}''y''<sup>2</sup> + 42''y'' + {{sfrac|131|2}}}}, and so on.<ref name=Toulisse13/>) [[Rosser's theorem]]<ref name="rosser" /> states that : <math>p_n > n \log n.</math> Dusart (1999).<ref name=Dusart99>{{cite journal|author-link=Pierre Dusart|last=Dusart|first=Pierre|title=The {{mvar|k}}th prime is greater than {{math|''k''(log ''k'' + log log ''k'' − 1)}} for {{math|''k'' ≥ 2}}|journal=[[Mathematics of Computation]]|volume=68|issue=225|year=1999|pages=411–415|mr=1620223|doi=10.1090/S0025-5718-99-01037-6|doi-access=free}}</ref> found tighter bounds using the form of the Cesàro/Cipolla approximations but varying the lowest-order constant term. {{math|''B<sub>k</sub>''(''x''; ''C'')}} is the same function as above, but with the lowest-order constant term replaced by a parameter {{mvar|C}}:<!--Note that this notation is created for Wikipedia to keep the equations manageably short, and is not from any source. B is for "bound"; change it if you like.--> : <math>\begin{align} p_n \; &> \; n B_0(\log n; 1) && \text{for } n \ge 2,\text{ and}\\ p_n \; &< \; n B_0(\log n; 0.9484) && \text{for } n \ge 39017,\text{ where}\\ B_0(x;C) \; &= \; x + \log x - C.\\ p_n \; &> \; n B_1(\log n; 2.25) && \text{for } n \ge 2,\text{ and}\\ p_n \; &< \; n B_1(\log n; 1.8) && \text{for } n \ge 27076,\text{ where}\\ B_1(x;C) \; &= \; x + \log x - 1 + \frac{\log x - C}{x}. \end{align}</math> The upper bounds can be extended to smaller {{mvar|n}} by loosening the parameter. For example, {{math|''p<sub>n</sub>'' < ''n B''<sub>1</sub>(log ''n''; 0.5)}} for all {{math|''n'' ≥ 20}}.<ref name=Axler19>{{cite journal |journal=Journal of Integer Sequences |volume=22 |year=2019 |article-number=19.4.2 |title=New Estimates for the {{mvar|n}}th Prime Number |first=Christian |last=Axler |arxiv=1706.03651 |url=https://cs.uwaterloo.ca/journals/JIS/VOL22/Axler/axler17.html }}</ref> Axler (2019)<ref name=Axler19/> extended this to higher order, showing: : <math>\begin{align} p_n \; &> \; n B_2(\log n;11.321) \quad \text{for } n \ge 2, \text{ and }\\ p_n \; &< \; n B_2(\log n;10.667) \quad \text{for } n \ge 46\,254\,381,\text{ where}\\ B_2(x;C) \; &= \; x + \log x - 1 + \frac{\log x - 2}{x} - \frac{(\log x)^2 - 6\log x + C}{2x^2}. \end{align}</math> Again, the bound on {{mvar|n}} may be decreased by loosening the parameter. For example, {{math|''p<sub>n</sub>'' < ''n B''<sub>2</sub>(log ''n''; 0)}} for {{math|n ≥ 3468}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)