Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projective representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== *{{citation|first=Valentine|last=Bargmann|title=On unitary ray representations of continuous groups|journal=[[Annals of Mathematics]]|volume=59|pages=1β46|year=1954|issue=1|doi=10.2307/1969831|jstor=1969831}} *{{citation|title=Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics|first=Terry|last= Gannon|publisher=Cambridge University Press|year= 2006|isbn=978-0-521-83531-2}} *{{citation|first=Brian C.|last=Hall|title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267 |publisher=Springer|year=2013| isbn=978-1461471158}} * {{Citation|first=Brian C.|last=Hall|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition= 2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} *{{citation|first=I.|last=Schur|authorlink=Issai Schur|title=Γber die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen|year=1911|journal=[[Crelle's Journal]]|pages=155β250|volume=139|url=http://gdz.sub.uni-goettingen.de/no_cache/en/dms/load/img/?IDDOC=261150 }} *{{citation|first=D. J.|last=Simms|title=A short proof of Bargmann's criterion for the lifting of projective representations of Lie groups|journal=Reports on Mathematical Physics|volume=2|pages=283β287|year=1971|issue=4|doi=10.1016/0034-4877(71)90011-5|bibcode=1971RpMP....2..283S}} [[Category:Homological algebra]] [[Category:Group theory]] [[Category:Representation theory]] [[Category:Representation theory of groups]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)