Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Spin-orbit coupled systems== When one takes the [[spinβorbit interaction]] into consideration, the {{mvar|L}} and {{mvar|S}} operators no longer [[Commutativity|commute]] with the [[Hamiltonian (quantum mechanics)|Hamiltonian]], and the eigenstates of the system no longer have well-defined orbital angular momentum and spin. Thus another set of quantum numbers should be used. This set includes<ref>{{cite book|title=Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry |volume=1 |first=P. W. |last=Atkins |publisher=Oxford University Press |date=1977 |isbn=0-19-855129-0}}{{page needed|date=February 2019}}</ref><ref name="Atkins 1977">{{cite book|title=Molecular Quantum Mechanics Part III: An Introduction to Quantum Chemistry |volume=2 |first=P. W. |last=Atkins |publisher=Oxford University Press |date=1977}}{{ISBN missing}}{{page needed|date=February 2019}}</ref> # The [[total angular momentum quantum number]]: <math display=block> j = |\ell \pm s|, </math> which gives the total angular momentum through the relation <math display=block> J^2 = \hbar^2 j (j + 1).</math> # The [[Azimuthal quantum number#Total angular momentum of an electron in the atom|projection of the total angular momentum]] along a specified axis:<math display=block> m_j = -j, -j + 1, -j + 2, \cdots, j - 2, j - 1, j </math> analogous to the above and satisfies both <math display=block> m_j = m_\ell + m_s, </math> and <math display=block> |m_\ell + m_s| \leq j. </math> # [[Parity (physics)|Parity]]<br>This is the [[eigenvalue]] under reflection: positive (+1) for states which came from even {{mvar|{{ell}}}} and negative (β1) for states which came from odd {{mvar|{{ell}}}}. The former is also known as '''even parity''' and the latter as '''odd parity''', and is given by<math display=block> P = (-1)^\ell .</math> For example, consider the following 8 states, defined by their quantum numbers: :{| style="border: none; border-spacing: 1em 0" class="wikitable" ! ! {{mvar|n}} ! {{mvar|{{ell}}}} ! {{mvar|m<sub>{{ell}}</sub>}} ! {{mvar|m<sub>s</sub>}} | rowspan=9 style="border:0px;" | ! {{math|''{{ell}}'' + ''s''}} ! {{math|''{{ell}}'' β ''s''}} ! {{math|''m<sub>{{ell}}</sub>'' + ''m<sub>s</sub>''}} <!-- N L ML MS L+S L-S ML+MS --> |-align=right ! (1) | 2 || 1 || 1 || +{{sfrac|1|2}} || {{sfrac|3|2}} || <s>{{sfrac|1|2}}</s> || {{sfrac|3|2}} |-align=right ! (2) | 2 || 1 || 1 || β{{sfrac|1|2}} || {{sfrac|3|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} |-align=right ! (3) | 2 || 1 || 0 || +{{sfrac|1|2}} || {{sfrac|3|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} |-align=right ! (4) | 2 || 1 || 0 || β{{sfrac|1|2}} || {{sfrac|3|2}} || {{sfrac|1|2}} || β{{sfrac|1|2}} |-align=right ! (5) | 2 || 1 || β1 || +{{sfrac|1|2}} || {{sfrac|3|2}} || {{sfrac|1|2}} || β{{sfrac|1|2}} |-align=right ! (6) | 2 || 1 || β1 || β{{sfrac|1|2}} || {{sfrac|3|2}} || <s>{{sfrac|1|2}}</s> || β{{sfrac|3|2}} |-align=right ! (7) | 2 || 0 || 0 || +{{sfrac|1|2}} || {{sfrac|1|2}} || β{{sfrac|1|2}} || {{sfrac|1|2}} |-align=right ! (8) | 2 || 0 || 0 || β{{sfrac|1|2}} || {{sfrac|1|2}} || β{{sfrac|1|2}} || β{{sfrac|1|2}} |} The [[quantum state]]s in the system can be described as linear combination of these 8 states. However, in the presence of [[spinβorbit interaction]], if one wants to describe the same system by 8 states that are [[eigenvector]]s of the [[Hamiltonian (quantum mechanics)|Hamiltonian]] (i.e. each represents a state that does not mix with others over time), we should consider the following 8 states: :{| class="wikitable" ! {{math|''j''}} || {{math|1=''m<sub>j</sub>''}} || parity || |- | {{sfrac|3|2}}|| align=right | {{sfrac|3|2}}|| align=right | odd || coming from state (1) above |- | {{sfrac|3|2}}|| align=right | {{sfrac|1|2}}|| align=right | odd || coming from states (2) and (3) above |- | {{sfrac|3|2}}|| align=right | β{{sfrac|1|2}}|| align=right | odd || coming from states (4) and (5) above |- | {{sfrac|3|2}}|| align=right | β{{sfrac|3|2}}|| align=right | odd || coming from state (6) above |- | {{sfrac|1|2}}|| align=right | {{sfrac|1|2}}|| align=right | odd || coming from states (2) and (3) above |- | {{sfrac|1|2}}|| align=right | β{{sfrac|1|2}}|| align=right | odd || coming from states (4) and (5) above |- | {{sfrac|1|2}}|| align=right | {{sfrac|1|2}}|| align=right | even || coming from state (7) above |- | {{sfrac|1|2}}|| align=right | β{{sfrac|1|2}}|| align=right | even || coming from state (8) above |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)