Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Extending the bra–ket notation to bras and kets == {{Main|Bra–ket notation}} Let <math>\left(H, \langle\cdot, \cdot \rangle_H\right)</math> be a Hilbert space and as before, let <math>\langle y\, | \,x \rangle_H := \langle x, y \rangle_H.</math> Let <math display=block>\begin{alignat}{4} \Phi :\;&& H &&\;\to \;& H^* \\[0.3ex] && g &&\;\mapsto\;& \left\langle \,g\mid \cdot\, \right\rangle_H = \left\langle \,\cdot, g\, \right\rangle_H \\ \end{alignat}</math> which is a bijective antilinear isometry that satisfies <math display=block>(\Phi h) g = \langle h\mid g \rangle_H = \langle g, h \rangle_H \quad \text{ for all } g, h \in H.</math> '''Bras''' Given a vector <math>h \in H,</math> let <math>\langle h\, |</math> denote the continuous linear functional <math>\Phi h</math>; that is, <math display=block>\langle h\, | ~:=~ \Phi h</math> so that this functional <math>\langle h\, |</math> is defined by <math>g \mapsto \left\langle \,h\mid g\, \right\rangle_H.</math> This map was denoted by <math>\left\langle h \mid \cdot\, \right\rangle</math> earlier in this article. The assignment <math>h \mapsto \langle h |</math> is just the isometric antilinear isomorphism <math>\Phi ~:~ H \to H^*,</math> which is why <math>~\langle c g + h\, | ~=~ \overline{c} \langle g\mid ~+~ \langle h\, |~</math> holds for all <math>g, h \in H</math> and all scalars <math>c.</math> The result of plugging some given <math>g \in H</math> into the functional <math>\langle h\, |</math> is the scalar <math>\langle h\, | \,g \rangle_H = \langle g, h \rangle_H,</math> which may be denoted by <math>\langle h \mid g \rangle.</math><ref group=note>The usual notation for plugging an element <math>g</math> into a linear map <math>F</math> is <math>F(g)</math> and sometimes <math>Fg.</math> Replacing <math>F</math> with <math>\langle h\mid :=~ \Phi h</math> produces <math>\langle h\mid(g)</math> or <math>\langle h \mid g,</math> which is unsightly (despite being consistent with the usual notation used with functions). Consequently, the symbol <math>\,\rangle\,</math> is appended to the end, so that the notation <math>\langle h\mid g \rangle</math> is used instead to denote this value <math>(\Phi h) g.</math></ref> '''Bra of a linear functional''' Given a continuous linear functional <math>\psi \in H^*,</math> let <math>\langle \psi\mid</math> denote the vector <math>\Phi^{-1} \psi \in H</math>; that is, <math display=block>\langle \psi\mid ~:=~ \Phi^{-1} \psi.</math> The assignment <math>\psi \mapsto \langle \psi\mid</math> is just the isometric antilinear isomorphism <math>\Phi^{-1} ~:~ H^* \to H,</math> which is why <math>~\langle c \psi + \phi\mid ~=~ \overline{c} \langle \psi\mid ~+~ \langle \phi\mid~</math> holds for all <math>\phi, \psi \in H^*</math> and all scalars <math>c.</math> The defining condition of the vector <math>\langle \psi | \in H</math> is the technically correct but unsightly equality <math display=block>\left\langle \, \langle \psi\mid \, \mid g \right\rangle_H ~=~ \psi g \quad \text{ for all } g \in H,</math> which is why the notation <math>\left\langle \psi \mid g \right\rangle</math> is used in place of <math>\left\langle \, \langle \psi\mid \, \mid g \right\rangle_H = \left\langle g, \, \langle \psi\mid \right\rangle_H.</math> With this notation, the defining condition becomes <math display=block>\left\langle \psi\mid g \right\rangle ~=~ \psi g \quad \text{ for all } g \in H.</math> '''Kets''' For any given vector <math>g \in H,</math> the notation <math>| \,g \rangle</math> is used to denote <math>g</math>; that is, <math display=block>\mid g \rangle : = g.</math> The assignment <math>g \mapsto | \,g \rangle</math> is just the identity map <math>\operatorname{Id}_H : H \to H,</math> which is why <math>~\mid c g + h \rangle ~=~ c \mid g \rangle ~+~ \mid h \rangle~</math> holds for all <math>g, h \in H</math> and all scalars <math>c.</math> The notation <math>\langle h\mid g \rangle</math> and <math>\langle \psi\mid g \rangle</math> is used in place of <math>\left\langle h\mid \, \mid g \rangle \, \right\rangle_H ~=~ \left\langle \mid g \rangle, h \right\rangle_H</math> and <math>\left\langle \psi\mid \, \mid g \rangle \, \right\rangle_H ~=~ \left\langle g, \, \langle \psi\mid \right\rangle_H,</math> respectively. As expected, <math>~\langle \psi\mid g \rangle = \psi g~</math> and <math>~\langle h\mid g \rangle~</math> really is just the scalar <math>~\langle h\mid g \rangle_H ~=~ \langle g, h \rangle_H.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)