Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple Lie group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== List == === Abelian === {{See also|Abelian group}} {| class="wikitable" |- ! width=100| ! Dimension ! Outer automorphism group ! Dimension of symmetric space ! Symmetric space ! Remarks |-class="sorttop" ! <math>\mathbb{R}</math> (Abelian) | 1 | <math>\mathbb{R}^*</math> | 1 | <math>\mathbb{R}</math> | {{Ref|Note†|†}} |} ====Notes==== :{{Note|Note†|†}} The group <math>\mathbb{R}</math> is not 'simple' as an abstract group, and according to most (but not all) definitions this is not a simple Lie group. Further, most authors do not count its Lie algebra as a simple Lie algebra. It is listed here so that the list of "irreducible simply connected symmetric spaces" is complete. Note that <math>\mathbb{R}</math> is the only such non-compact symmetric space without a compact dual (although it has a compact quotient ''S''<sup>1</sup>). === Compact === {{See also|Compact group}} {| class="wikitable sortable" |- ! width=100| ! Dimension ! Real rank ! Fundamental<br>group ! class="unsortable" | Outer automorphism<br>group ! class="unsortable" | Other names ! class="unsortable" | Remarks |- ! ''A''<sub>''n''</sub> ({{math|''n'' ≥ 1}}) compact | ''n''(''n'' + 2) | 0 | Cyclic,<br/>order {{math|''n'' + 1}} | 1 if {{math|1=''n'' = 1}},<br/>2 if {{math|''n'' > 1}}. | '''[[projective special unitary group]]'''<br>{{math|PSU(''n'' + 1)}} | ''A''<sub>1</sub> is the same as ''B''<sub>1</sub> and ''C''<sub>1</sub> |- ! ''B''<sub>''n''</sub> ({{math|''n'' ≥ 2}}) compact | ''n''(2''n'' + 1) | 0 | 2 | 1 | '''[[special orthogonal group]]'''<br>SO<sub>2''n''+1</sub>(''R'') | ''B''<sub>1</sub> is the same as ''A''<sub>1</sub> and ''C''<sub>1</sub>.<br>''B''<sub>2</sub> is the same as ''C''<sub>2</sub>. |- ! ''C''<sub>''n''</sub> ({{math|''n'' ≥ 3}}) compact | ''n''(2''n'' + 1) | 0 | 2 | 1 | '''projective [[compact symplectic group]]'''<br>PSp(''n''), PSp(2''n''), PUSp(''n''), PUSp(2''n'') | Hermitian. Complex structures of ''H''<sup>''n''</sup>. Copies of complex projective space in quaternionic projective space. |- ! ''D''<sub>''n''</sub> ({{math|''n'' ≥ 4}}) compact | ''n''(2''n'' − 1) | 0 | Order 4 (cyclic when ''n'' is odd). | 2 if {{math|''n'' > 4}},<br/>''S''<sub>3</sub> if {{math|1=''n'' = 4}} |style="white-space:math"| '''projective special [[orthogonal group]]'''<br>PSO<sub>2''n''</sub>(''R'') | ''D''<sub>3</sub> is the same as ''A''<sub>3</sub>, ''D''<sub>2</sub> is the same as ''A''<sub>1</sub><sup>2</sup>, and ''D''<sub>1</sub> is abelian. |- ! ''E''<sub>6</sub><sup>−78</sup> compact | 78 | 0 | 3 | 2 | | |- ! ''E''<sub>7</sub><sup>−133</sup> compact | 133 | 0 | 2 | 1 | | |- ! ''E''<sub>8</sub><sup>−248</sup> compact | 248 | 0 | 1 | 1 | | |- ! ''F''<sub>4</sub><sup>−52</sup> compact | 52 | 0 | 1 | 1 | | |- ! ''G''<sub>2</sub><sup>−14</sup> compact | 14 | 0 | 1 | 1 | | This is the automorphism group of the Cayley algebra. |} === Split === {{See also|Split Lie algebra}} {{sort-under}} {| class="wikitable sortable sort-under" |- ! ! Dimension ! {{verth|va=middle|Real rank}} ! Maximal compact<br>subgroup ! Fundamental<br>group ! class="unsortable" | Outer auto­morphism<br>group ! class="unsortable" | Other names ! {{verth|va=middle|Dimension of<br>symmetric space}} ! class="unsortable" | Compact<br>symmetric space ! class="unsortable" | Non-Compact<br>symmetric space ! class="unsortable" | Remarks |- ! {{verth|va=middle|''A''<sub>''n''</sub> I (''n'' ≥ 1) split}} | ''n''(''n'' + 2) | ''n'' | ''D''<sub>''n''/2</sub> or ''B''<sub>(''n''−1)/2</sub> | Infinite cyclic if ''n'' = 1<br>2 if ''n'' ≥ 2 | 1 if ''n'' = 1<br>2 if ''n'' ≥ 2. | '''[[projective special linear group]]'''<br>PSL<sub>''n''+1</sub>(R) | {{math|{{sfrac|''n''(''n'' + 3)|2}}}} | Real structures on ''C''<sup>''n''+1</sup> or set of RP<sup>''n''</sup> in CP<sup>''n''</sup>. Hermitian if {{math|1=''n'' = 1}}, in which case it is the 2-sphere. | Euclidean structures on ''R''<sup>''n''+1</sup>. Hermitian if {{math|1=''n'' = 1}}, when it is the upper half plane or unit complex disc. | |- ! {{verth|va=middle|''B''<sub>''n''</sub> I (''n'' ≥ 2) split}} | ''n''(2''n'' + 1) | ''n'' | SO(''n'')SO(''n''+1) | Non-cyclic, order 4 | 1 | identity component of '''[[indefinite orthogonal group|special orthogonal group]]'''<br>SO(''n'',''n''+1) | {{math|''n''(''n'' + 1)}} | | | ''B''<sub>1</sub> is the same as ''A''<sub>1</sub>. |- ! {{verth|va=middle|''C''<sub>''n''</sub> I (''n'' ≥ 3) split}} | ''n''(2''n'' + 1) | ''n'' | ''A''<sub>''n''−1</sub>''S''<sup>1</sup> | Infinite cyclic | 1 | '''projective [[symplectic group]]'''<br>PSp<sub>2''n''</sub>(''R''), PSp(2''n'',''R''), PSp(2''n''), PSp(''n'',''R''), PSp(''n'') | {{math|''n''(''n'' + 1)}} | Hermitian. Complex structures of ''H''<sup>''n''</sup>. Copies of complex projective space in quaternionic projective space. | Hermitian. Complex structures on ''R''<sup>2''n''</sup> compatible with a symplectic form. Set of complex hyperbolic spaces in quaternionic hyperbolic space. Siegel upper half space. | ''C''<sub>2</sub> is the same as ''B''<sub>2</sub>, and ''C''<sub>1</sub> is the same as ''B''<sub>1</sub> and ''A''<sub>1</sub>. |- ! {{verth|va=middle|''D''<sub>''n''</sub> I (''n'' ≥ 4) split}} | ''n''(2''n'' − 1) | ''n'' | SO(''n'')SO(''n'') | Order 4 if ''n'' odd,<br/>8 if ''n'' even | 2 if {{math|''n'' > 4}},<br/>''S''<sub>3</sub> if {{math|1=''n'' = 4}} | identity component of '''projective [[indefinite orthogonal group|special orthogonal group]]'''<br>PSO(''n'',''n'') | ''n''<sup>2</sup> | | | ''D''<sub>3</sub> is the same as ''A''<sub>3</sub>, ''D''<sub>2</sub> is the same as ''A''<sub>1</sub><sup>2</sup>, and ''D''<sub>1</sub> is abelian. |- ! {{verth|va=middle|''E''<sub>6</sub><sup>6</sup> I split}} | 78 | 6 | ''C''<sub>4</sub> | Order 2 | Order 2 | E I | 42 | | | |- ! {{verth|va=middle|''E''<sub>7</sub><sup>7</sup> V split}} | 133 | 7 | ''A''<sub>7</sub> | Cyclic, order 4 | Order 2 | | 70 | | | |- ! {{verth|va=middle|''E''<sub>8</sub><sup>8</sup> VIII split}} | 248 | 8 | ''D''<sub>8</sub> | 2 | 1 | E VIII | 128 | | | @ [[E8 (mathematics)|E8]] |- ! {{verth|va=middle|''F''<sub>4</sub><sup>4</sup> I split}} | 52 | 4 | ''C''<sub>3</sub> × ''A''<sub>1</sub> | Order 2 | 1 | F I | 28 | Quaternionic projective planes in Cayley projective plane. | Hyperbolic quaternionic projective planes in hyperbolic Cayley projective plane. | |- ! {{verth|va=middle|''G''<sub>2</sub><sup>2</sup> I split}} | 14 | 2 | ''A''<sub>1</sub> × ''A''<sub>1</sub> | Order 2 | 1 | G I | 8 | Quaternionic subalgebras of the Cayley algebra. Quaternion-Kähler. | Non-division quaternionic subalgebras of the non-division Cayley algebra. Quaternion-Kähler. | |} === Complex === {{See also|Complex Lie group}} {{sort-under}} {| class="wikitable sortable sort-under" |- ! ! Real dimension ! {{verth|Real rank}} ! {{verth|Maximal compact<br>subgroup}} ! Fundamental<br>group ! class="unsortable" | Outer auto­morphism<br>group ! class="unsortable" | Other names ! Dimension of<br>symmetric space ! class="unsortable" | Compact<br>symmetric space ! class="unsortable" | Non-Compact<br>symmetric space |- ! ''A''<sub>''n''</sub><br/>(''n'' ≥ 1) complex | 2''n''(''n'' + 2) | ''n'' | ''A''<sub>''n''</sub> | Cyclic, order {{math|''n'' + 1}} | 2 if {{math|1=''n'' = 1}},<br/>4 (noncyclic) if {{math|''n'' ≥ 2}}. | '''[[projective special linear group|projective complex special linear group]]'''<br>PSL<sub>''n''+1</sub>(''C'') | ''n''(''n'' + 2) | Compact group ''A''<sub>''n''</sub> | Hermitian forms on ''C''<sup>''n''+1</sup> with fixed volume. |- ! ''B''<sub>n</sub><br/>(''n'' ≥ 2) complex | 2''n''(2''n'' + 1) | ''n'' | ''B''<sub>''n''</sub> | 2 | Order 2 (complex conjugation) | '''complex [[special orthogonal group]]'''<br>SO<sub>2''n''+1</sub>('''C''') | ''n''(2''n'' + 1) | Compact group ''B''<sub>n</sub> | |- ! ''C''<sub>''n''</sub><br/>(''n'' ≥ 3) complex | 2''n''(2''n'' + 1) | ''n'' | ''C''<sub>''n''</sub> | 2 | Order 2 (complex conjugation) | '''projective complex [[symplectic group]]'''<br>PSp<sub>2''n''</sub>('''C''') | ''n''(2''n'' + 1) | Compact group ''C''<sub>n</sub> | |- ! ''D''<sub>''n''</sub><br/>(''n'' ≥ 4) complex | 2''n''(2''n'' − 1) | ''n'' | ''D''<sub>''n''</sub> | Order 4 (cyclic when ''n'' is odd) | Noncyclic of order 4 for {{math|''n'' > 4}}, or the product of a group of order 2 and the symmetric group ''S''<sub>3</sub> when {{math|1=''n'' = 4}}. | '''projective complex special orthogonal group'''<br>PSO<sub>2''n''</sub>('''C''') | ''n''(2''n'' − 1) | Compact group ''D''<sub>n</sub> | |- ! ''E''<sub>6</sub> complex | 156 | 6 | ''E''<sub>6</sub> | 3 | Order 4 (non-cyclic) | | 78 | Compact group ''E''<sub>6</sub> | |- ! ''E''<sub>7</sub> complex | 266 | 7 | ''E''<sub>7</sub> | 2 | Order 2 (complex conjugation) | | 133 | Compact group ''E''<sub>7</sub> | |- ! ''E''<sub>8</sub> complex | 496 | 8 | ''E''<sub>8</sub> | 1 | Order 2 (complex conjugation) | | 248 | Compact group ''E''<sub>8</sub> | |- ! ''F''<sub>4</sub> complex | 104 | 4 | ''F''<sub>4</sub> | 1 | 2 | | 52 | Compact group ''F''<sub>4</sub> | |- ! ''G''<sub>2</sub> complex | 28 | 2 | ''G''<sub>2</sub> | 1 | Order 2 (complex conjugation) | | 14 | Compact group ''G''<sub>2</sub> | |} === Others === {{sort-under}} {| class="wikitable sortable sort-under" |- ! ! Dimension ! Real rank ! Maximal compact<br>subgroup ! Fundamental<br>group ! class="unsortable" | Outer automorphism<br>group ! class="unsortable" | Other names ! Dimension of<br>symmetric space ! class="unsortable" | Compact<br>symmetric space ! class="unsortable" | Non-Compact<br>symmetric space ! class="unsortable" | Remarks |- ! ''A''<sub>2''n''−1</sub> II<br>(''n'' ≥ 2) | {{math|(2''n'' − 1)(2''n'' + 1)}} | ''n'' − 1 | ''C''<sub>''n''</sub> | Order 2 | | SL<sub>''n''</sub>(''H''), SU<sup>∗</sup>(2''n'') | {{hs|zzzzzz <!-- when sorted, comes after numbers -->}}{{math|(''n'' − 1)(2''n'' + 1)}} | Quaternionic structures on ''C''<sup>2''n''</sup> compatible with the Hermitian structure | Copies of [[quaternionic hyperbolic space]] (of dimension {{math|''n'' − 1}}) in [[complex hyperbolic space]] (of dimension {{math|2''n'' − 1}}). | |- !style="white-space:nowrap"| ''A''<sub>''n''</sub> III<br>(''n'' ≥ 1)<br>''p'' + ''q'' = ''n'' + 1<br>(1 ≤ ''p'' ≤ ''q'') | ''n''(''n'' + 2) | ''p'' | ''A''<sub>''p''−1</sub>''A''<sub>''q''−1</sub>''S''<sup>1</sup> | | | SU(''p'',''q''), A III | 2''pq'' |style="white-space:nowrap"| [[Hermitian symmetric space|Hermitian]].<br>Grassmannian of ''p'' subspaces of ''C''<sup>''p''+''q''</sup>.<br>If ''p'' or ''q'' is 2; [[Quaternion-Kähler symmetric space|quaternion-Kähler]] |style="white-space:nowrap"| Hermitian.<br>Grassmannian of maximal positive definite<br>subspaces of ''C''<sup>''p'',''q''</sup>.<br>If ''p'' or ''q'' is 2, quaternion-Kähler |style="white-space:nowrap"| If ''p''=''q''=1, split<br>If {{abs|''p''−''q''}} ≤ 1, [[quasi-split]] |- ! ''B''<sub>''n''</sub> I<br>(''n'' > 1)<br>''p''+''q'' = 2''n''+1 | ''n''(2''n'' + 1) | min(''p'',''q'') | SO(''p'')SO(''q'') | | | [[indefinite orthogonal group|SO(''p'',''q'')]] | ''pq'' |style="white-space:nowrap"| Grassmannian of ''R''<sup>''p''</sup>s in ''R''<sup>''p''+''q''</sup>.<br>If ''p'' or ''q'' is 1, Projective space<br>If ''p'' or ''q'' is 2; Hermitian<br>If ''p'' or ''q'' is 4, quaternion-Kähler |style="white-space:nowrap"| Grassmannian of positive definite ''R''<sup>''p''</sup>s in ''R''<sup>''p'',''q''</sup>.<br>If ''p'' or ''q'' is 1, Hyperbolic space<br>If ''p'' or ''q'' is 2, Hermitian<br>If ''p'' or ''q'' is 4, quaternion-Kähler |style="white-space:nowrap"| If {{abs|''p''−''q''}} ≤ 1, split. |- ! ''C''<sub>''n''</sub> II<br>(''n'' > 2)<br>''n'' = ''p''+''q''<br>(1 ≤ ''p'' ≤ ''q'') | ''n''(2''n'' + 1) | min(''p'',''q'') | ''C''<sub>''p''</sub>''C''<sub>''q''</sub> | Order 2 |style="white-space:nowrap"| 1 if ''p'' ≠ ''q'', 2 if ''p'' = ''q''. | Sp<sub>2''p'',2''q''</sub>(R) | 4''pq'' |style="white-space:nowrap"| Grassmannian of ''H''<sup>''p''</sup>s in ''H''<sup>''p''+''q''</sup>.<br>If ''p'' or ''q'' is 1, quaternionic projective space<br>in which case it is quaternion-Kähler. |style="white-space:nowrap"| ''H''<sup>''p''</sup>s in ''H''<sup>''p'',''q''</sup>.<br>If ''p'' or ''q'' is 1, quaternionic hyperbolic space<br>in which case it is quaternion-Kähler. | |- ! ''D''<sub>''n''</sub> I<br>(''n'' ≥ 4)<br>''p''+''q'' = 2''n'' | ''n''(2''n'' − 1) | min(''p'',''q'') | SO(''p'')SO(''q'') | | If ''p'' and ''q'' ≥ 3, order 8. | SO(''p'',''q'') | ''pq'' |style="white-space:nowrap"| Grassmannian of ''R''<sup>''p''</sup>s in ''R''<sup>''p''+''q''</sup>.<br>If ''p'' or ''q'' is 1, Projective space<br>If ''p'' or ''q'' is 2 ; Hermitian<br>If ''p'' or ''q'' is 4, quaternion-Kähler |style="white-space:nowrap"| Grassmannian of positive definite ''R''<sup>''p''</sup>s in ''R''<sup>''p'',''q''</sup>.<br>If ''p'' or ''q'' is 1, Hyperbolic Space<br>If ''p'' or ''q'' is 2, Hermitian<br>If ''p'' or ''q'' is 4, quaternion-Kähler |style="white-space:nowrap"| If {{math|1=''p'' = ''q''}}, split<br>If {{abs|''p''−''q''}} ≤ 2, quasi-split |- ! ''D''<sub>''n''</sub> III<br>(''n'' ≥ 4) | ''n''(2''n'' − 1) | ⌊''n''/2⌋ | ''A''<sub>''n''−1</sub>''R''<sup>1</sup> | Infinite cyclic | Order 2 | ''SO''<sup>*</sup>(2n) | ''n''(''n'' − 1) | Hermitian.<br>Complex structures on R<sup>2''n''</sup> compatible with the Euclidean structure. | Hermitian.<br>Quaternionic quadratic forms on R<sup>2''n''</sup>. | |- ! ''E''<sub>6</sub><sup>2</sup> II<br>(quasi-split) | 78 | 4 | ''A''<sub>5</sub>''A''<sub>1</sub> | Cyclic, order 6 | Order 2 | E II | 40 | Quaternion-Kähler. | Quaternion-Kähler. | Quasi-split but not split. |- ! ''E''<sub>6</sub><sup>−14</sup> III | 78 | 2 | ''D''<sub>5</sub>''S''<sup>1</sup> | Infinite cyclic | Trivial | E III | 32 | Hermitian.<br>Rosenfeld elliptic projective plane over the complexified Cayley numbers. | Hermitian.<br>Rosenfeld hyperbolic projective plane over the complexified Cayley numbers. | |- ! ''E''<sub>6</sub><sup>−26</sup> IV | 78 | 2 | ''F''<sub>4</sub> | Trivial | Order 2 | E IV | 26 | Set of [[Cayley projective plane]]s in the projective plane over the complexified Cayley numbers. | Set of Cayley hyperbolic planes in the hyperbolic plane over the complexified Cayley numbers. | |- ! ''E''<sub>7</sub><sup>−5</sup> VI | 133 | 4 | ''D''<sub>6</sub>''A''<sub>1</sub> | Non-cyclic, order 4 | Trivial | ''E'' VI | 64 | Quaternion-Kähler. | Quaternion-Kähler. | |- ! ''E''<sub>7</sub><sup>−25</sup> VII | 133 | 3 | ''E''<sub>6</sub>''S''<sup>1</sup> | Infinite cyclic | Order 2 | E VII | 54 | Hermitian. | Hermitian. | |- ! ''E''<sub>8</sub><sup>−24</sup> IX | 248 | 4 | ''E''<sub>7</sub> × ''A''<sub>1</sub> | Order 2 | 1 | E IX | 112 | Quaternion-Kähler. | Quaternion-Kähler. | |- ! ''F''<sub>4</sub><sup>−20</sup> II | 52 | 1 | ''B''<sub>4</sub> (Spin<sub>9</sub>('''R''')) | Order 2 | 1 | F II | 16 | Cayley projective plane. Quaternion-Kähler. | Hyperbolic Cayley projective plane. Quaternion-Kähler. | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)