Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simplex algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Advanced topics== ===Implementation=== {{main|Revised simplex algorithm}} The tableau form used above to describe the algorithm lends itself to an immediate implementation in which the tableau is maintained as a rectangular (''m'' + 1)-by-(''m'' + ''n'' + 1) array. It is straightforward to avoid storing the m explicit columns of the identity matrix that will occur within the tableau by virtue of '''B''' being a subset of the columns of ['''A''', '''I''']. This implementation is referred to as the "''standard'' simplex algorithm". The storage and computation overhead is such that the standard simplex method is a prohibitively expensive approach to solving large linear programming problems. In each simplex iteration, the only data required are the first row of the tableau, the (pivotal) column of the tableau corresponding to the entering variable and the right-hand-side. The latter can be updated using the pivotal column and the first row of the tableau can be updated using the (pivotal) row corresponding to the leaving variable. Both the pivotal column and pivotal row may be computed directly using the solutions of linear systems of equations involving the matrix '''B''' and a matrix-vector product using '''A'''. These observations motivate the "[[Revised simplex algorithm|''revised'' simplex algorithm]]", for which implementations are distinguished by their invertible representation of '''B'''.<ref name="DantzigThapa2" >{{cite book |first1=George B. |last1=Dantzig |authorlink=George B. Dantzig |first2=Mukund N. |last2=Thapa |year=2003 |title=Linear Programming 2: Theory and Extensions |publisher=Springer-Verlag }}</ref> In large linear-programming problems '''A''' is typically a [[sparse matrix]] and, when the resulting sparsity of '''B''' is exploited when maintaining its invertible representation, the revised simplex algorithm is much more efficient than the standard simplex method. Commercial simplex solvers are based on the revised simplex algorithm.<ref name="Padberg" >{{cite book |first=M. |last=Padberg |title=Linear Optimization and Extensions |edition=Second |publisher=Springer-Verlag |year=1999 |isbn=3-540-65833-5 }}</ref><ref name="DantzigThapa2"/><ref>{{cite book |first1=Dmitris |last1=Alevras |first2=Manfred W. |last2=Padberg |title=Linear Optimization and Extensions: Problems and Solutions |series=Universitext |publisher=Springer-Verlag |year=2001 |isbn=3-540-41744-3 }} (Problems from Padberg with solutions.)</ref><ref name="MarosMitra" >{{cite book|last1=Maros|first1=István|last2=Mitra|author2-link=Gautam Mitra|first2=Gautam|chapter=Simplex algorithms|mr=1438309|title=Advances in linear and integer programming|pages=1–46|editor=J. E. Beasley|publisher=Oxford Science|year=1996}}</ref><ref>{{cite book|mr=1960274|last=Maros|first=István|title=Computational techniques of the simplex method|series=International Series in Operations Research & Management Science|volume=61|publisher=Kluwer Academic Publishers|location=Boston, MA|year=2003|pages=xx+325|isbn=978-1-4020-7332-8}}</ref> ===Degeneracy: stalling and cycling=== If the values of all basic variables are strictly positive, then a pivot must result in an improvement in the objective value. When this is always the case no set of basic variables occurs twice and the simplex algorithm must terminate after a finite number of steps. Basic feasible solutions where at least one of the ''basic ''variables is zero are called ''degenerate'' and may result in pivots for which there is no improvement in the objective value. In this case there is no actual change in the solution but only a change in the set of basic variables. When several such pivots occur in succession, there is no improvement; in large industrial applications, degeneracy is common and such "''stalling''" is notable. Worse than stalling is the possibility the same set of basic variables occurs twice, in which case, the deterministic pivoting rules of the simplex algorithm will produce an infinite loop, or "cycle". While degeneracy is the rule in practice and stalling is common, cycling is rare in practice. A discussion of an example of practical cycling occurs in [[Manfred W. Padberg|Padberg]].<ref name="Padberg"/> [[Bland's rule]] prevents cycling and thus guarantees that the simplex algorithm always terminates.<ref name="Padberg"/><ref name="Bland"> {{cite journal | title=New finite pivoting rules for the simplex method | first1=Robert G. | last1=Bland | authorlink1=Robert G. Bland | journal=[[Mathematics of Operations Research]] | volume=2 | issue=2 | date=May 1977 | pages=103–107 | doi=10.1287/moor.2.2.103 | jstor=3689647 | mr=459599 | s2cid=18493293}}</ref><ref>{{harvtxt|Murty|1983|p=79}}</ref> Another pivoting algorithm, the [[criss-cross algorithm]] never cycles on linear programs.<ref>There are abstract optimization problems, called [[oriented matroid]] programs, on which Bland's rule cycles (incorrectly) while the [[criss-cross algorithm]] terminates correctly.</ref> History-based pivot rules such as [[Zadeh's rule]] and [[Cunningham's rule]] also try to circumvent the issue of stalling and cycling by keeping track of how often particular variables are being used and then favor such variables that have been used least often. ===Efficiency in the worst case=== The simplex method is remarkably efficient in practice and was a great improvement over earlier methods such as [[Fourier–Motzkin elimination]]. However, in 1972, [[Victor Klee|Klee]] and Minty<ref name="KleeMinty">{{cite book|title=Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory of Theodore S. Motzkin)|editor-first=Oved|editor-last=Shisha|publisher=Academic Press|location=New York-London|year=1972|mr=332165|last1=Klee|first1=Victor|author-link1=Victor Klee|last2=Minty|first2= George J.|author-link2=George J. Minty|chapter=How good is the simplex algorithm?|pages=159–175}}</ref> gave an example, the [[Klee–Minty cube]], showing that the worst-case complexity of simplex method as formulated by Dantzig is [[exponential time]]. Since then, for almost every variation on the method, it has been shown that there is a family of linear programs for which it performs badly. It is an open question if there is a variation with [[polynomial time]], although sub-exponential pivot rules are known.<ref>{{Citation | last1 = Hansen | first1 = Thomas | last2 = Zwick | first2 = Uri | title = Proceedings of the forty-seventh annual ACM symposium on Theory of Computing | chapter = An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm | author2-link = Uri Zwick | pages = 209–218 | year = 2015 | doi = 10.1145/2746539.2746557 | citeseerx = 10.1.1.697.2526 | isbn = 9781450335362 | s2cid = 1980659 }} </ref> In 2014, it was proved{{citation-needed|date=January 2024}} that a particular variant of the simplex method is [[NP-mighty]], i.e., it can be used to solve, with polynomial overhead, any problem in NP implicitly during the algorithm's execution. Moreover, deciding whether a given variable ever enters the basis during the algorithm's execution on a given input, and determining the number of iterations needed for solving a given problem, are both [[NP-hardness|NP-hard]] problems.<ref>{{Cite journal|last1=Disser|first1=Yann|last2=Skutella|first2=Martin|date=2018-11-01|title=The Simplex Algorithm Is NP-Mighty|journal=ACM Trans. Algorithms|volume=15|issue=1|pages=5:1–5:19|doi=10.1145/3280847|issn=1549-6325|arxiv=1311.5935|s2cid=54445546}}</ref> At about the same time it was shown that there exists an artificial pivot rule for which computing its output is [[PSPACE-complete]].<ref>{{Citation | last1 = Adler | first1 = Ilan | last2 = Christos | first2 = Papadimitriou | author2-link = Christos Papadimitriou | last3 = Rubinstein | first3 = Aviad | title = Integer Programming and Combinatorial Optimization | chapter = On Simplex Pivoting Rules and Complexity Theory | volume = 17 | pages = 13–24 | year = 2014 | arxiv = 1404.3320 | doi = 10.1007/978-3-319-07557-0_2| series = Lecture Notes in Computer Science | isbn = 978-3-319-07556-3 | s2cid = 891022 }}</ref> In 2015, this was strengthened to show that computing the output of Dantzig's pivot rule is [[PSPACE-complete]].<ref>{{Citation | last1 = Fearnly | first1 = John | last2 = Savani | first2 = Rahul | title = Proceedings of the forty-seventh annual ACM symposium on Theory of Computing | chapter = The Complexity of the Simplex Method | pages = 201–208 | year = 2015 | arxiv = 1404.0605 | doi = 10.1145/2746539.2746558| isbn = 9781450335362 | s2cid = 2116116 }}</ref> ===Efficiency in practice=== Analyzing and quantifying the observation that the simplex algorithm is efficient in practice despite its exponential worst-case complexity has led to the development of other measures of complexity. The simplex algorithm has polynomial-time [[Best, worst and average case|average-case complexity]] under various [[probability distribution]]s, with the precise average-case performance of the simplex algorithm depending on the choice of a probability distribution for the [[random matrix|random matrices]].<ref name="Schrijver">[[Alexander Schrijver]], ''Theory of Linear and Integer Programming''. John Wiley & sons, 1998, {{isbn|0-471-98232-6}} (mathematical)</ref><ref name="Borgwardt">The simplex algorithm takes on average ''D'' steps for a cube. {{harvtxt|Borgwardt|1987}}: {{cite book|last=Borgwardt|first=Karl-Heinz|title=The simplex method: A probabilistic analysis|series=Algorithms and Combinatorics (Study and Research Texts)|volume=1|publisher=Springer-Verlag|location=Berlin|year=1987|pages=xii+268|isbn=978-3-540-17096-9|mr=868467}}</ref> Another approach to studying "[[porous set|typical phenomena]]" uses [[Baire category theory]] from [[general topology]], and to show that (topologically) "most" matrices can be solved by the simplex algorithm in a polynomial number of steps.{{Citation needed|date=June 2019}} Another method to analyze the performance of the simplex algorithm studies the behavior of worst-case scenarios under small perturbation – are worst-case scenarios stable under a small change (in the sense of [[structural stability]]), or do they become tractable? This area of research, called [[smoothed analysis]], was introduced specifically to study the simplex method. Indeed, the running time of the simplex method on input with noise is polynomial in the number of variables and the magnitude of the perturbations.<ref>{{Cite book | last1=Spielman | first1=Daniel | last2=Teng | first2=Shang-Hua | author2-link=Shanghua Teng | title=Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing | publisher=ACM | isbn=978-1-58113-349-3 | doi=10.1145/380752.380813 | year=2001 | chapter=Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time| pages=296–305 | arxiv=cs/0111050| s2cid=1471 }}</ref><ref>{{Cite journal|last1=Dadush|first1=Daniel|last2=Huiberts|first2=Sophie|date=2020-01-01|title=A Friendly Smoothed Analysis of the Simplex Method|url=https://epubs.siam.org/doi/abs/10.1137/18M1197205|journal=SIAM Journal on Computing|volume=49|issue=5|pages=STOC18–449|doi=10.1137/18M1197205|s2cid=226351624|issn=0097-5397|arxiv=1711.05667}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)