Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Smith chart
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Choice of Smith chart type and component type=== The choice of whether to use the ''Z'' Smith chart or the ''Y'' Smith chart for any particular calculation depends on which is more convenient. Impedances in series and admittances in parallel add while impedances in parallel and admittances in series are related by a reciprocal equation. If <math>Z_\text{TS} </math> is the equivalent impedance of series impedances and <math>Z_\text{TP} </math> is the equivalent impedance of parallel impedances, then :<math>Z_\text{TS} = Z_1 + Z_2 + Z_3 + ... \,</math> :<math>\frac{1}{Z_\text{TP}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + ... \,</math> For admittances the reverse is true, that is :<math>Y_\text{TP} = Y_1 + Y_2 + Y_3 + ... \,</math> :<math>\frac{1}{Y_\text{TS}} = \frac{1}{Y_1} + \frac{1}{Y_2} + \frac{1}{Y_3} + ... \,</math> Dealing with the [[multiplicative inverse|reciprocal]]s, especially in complex numbers, is more time-consuming and error-prone than using linear addition. In general therefore, most [[radio frequency|RF]] engineers work in the plane where the circuit topography supports linear addition. The following table gives the complex expressions for impedance (real and normalised) and admittance (real and normalised) for each of the three basic [[passive components|passive circuit elements]]: resistance, inductance and capacitance. Using just the characteristic impedance (or characteristic admittance) and test frequency an [[equivalent circuit]] can be found and vice versa. {| border="1" cellpadding="1" |+ <big>'''Expressions for impedance and admittance'''</big> <br/>normalised by impedance {{mvar|Z}}{{sub|0}} or admittance {{mvar|Y}}{{sub|0}} !rowspan="2" width="100" style="text-align:center;"| '''Element type''' |colspan="2" width="180" style="text-align:center;"| '''Impedance''' ({{mvar|Z}} or {{mvar|z}}) or '''Reactance''' ({{mvar|X}} or {{mvar|x}}) |colspan="2" width="180" style="text-align:center;"| '''Admittance''' ({{mvar|Y}} or {{mvar|y}}) or '''Susceptance''' ({{mvar|B}} or {{mvar|b}}) |- |style="text-align:center;"| '''Actual''' <br/>([[Ohm (unit)|Ω]]) |style="text-align:center;"| '''Normalised''' <br/>(no units) |style="text-align:center;"| '''Actual''' <br/>([[Siemens (unit)|S]]) |style="text-align:center;"| '''Normalised''' <br/>(no units) |- |style="text-align:center;"| '''Resistance''' ({{mvar|R}}) | <math>\; Z = R \;</math> | <math>\; z = \frac{R}{Z_0} = R Y_0 \;</math> | <math>\; Y = G = \frac{1}{R} \;</math> | <math>\; y = g = \frac{1}{R Y_0} = \frac{Z_0}{R} \;</math> |- |style="text-align:center;"| '''Inductance''' ({{mvar|L}}) | <math>\; Z = j X_\text{L} = j \omega L \;</math> | <math>\; z = j x_\text{L} = j \frac{\omega L}{Z_0} = j \omega L Y_0 \;</math> | <math>\; Y = -jB_\text{L} = \frac{-j}{\omega L} \;</math> | <math>\; y = -jb_\text{L} = \frac{-j}{\omega L Y_0} = \frac{-j Z_0}{\omega L} \;</math> |- |style="text-align:center;"| '''Capacitance''' ({{mvar|C}}) | <math>\; Z = -j X_\text{C} = \frac{-j}{\omega C} \;</math> | <math>\; z = -j x_\text{C} = \frac{-j}{\omega C Z_0} = \frac{-j Y_0}{\omega C} \;</math> | <math>\; Y = j B_\text{C} = j \omega C \;</math> | <math>\; y = j b_\text{C} = j\frac{\omega C}{Y_0} = j \omega C Z_0 \;</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)