Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Functional calculus=== One important application of the spectral theorem (in whatever form) is the idea of defining a [[functional calculus]]. That is, given a function <math>f</math> defined on the spectrum of <math>A</math>, we wish to define an operator <math>f(A)</math>. If <math>f</math> is simply a positive power, <math>f(x) = x^n</math>, then <math>f(A)</math> is just the <math>n</math>-th power of <math>A</math>, <math>A^n</math>. The interesting cases are where <math>f</math> is a nonpolynomial function such as a square root or an exponential. Either of the versions of the spectral theorem provides such a functional calculus.<ref>E.g., {{harvnb|Hall|2013}} Definition 7.13</ref> In the direct-integral version, for example, <math>f(A)</math> acts as the "multiplication by <math>f</math>" operator in the direct integral: <math display="block">[f(A)s](\lambda) = f(\lambda) s(\lambda).</math> That is to say, each space <math>H_{\lambda}</math> in the direct integral is a (generalized) eigenspace for <math>f(A)</math> with eigenvalue <math>f(\lambda)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)