Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalization == {{see also|Ellipsoidal coordinates}} It is also possible to deal with ellipsoids in Cartesian coordinates by using a modified version of the spherical coordinates. Let P be an ellipsoid specified by the level set <math display="block">ax^2 + by^2 + cz^2 = d.</math> The modified spherical coordinates of a point in P in the ISO convention (i.e. for physics: ''radius'' {{mvar|r}}, ''inclination'' {{mvar|ΞΈ}}, ''azimuth'' {{mvar|Ο}}) can be obtained from its [[Cartesian coordinate system|Cartesian coordinates]] {{math|(''x'', ''y'', ''z'')}} by the formulae <math display="block">\begin{align} x &= \frac{1}{\sqrt{a}} r \sin\theta \, \cos\varphi, \\ y &= \frac{1}{\sqrt{b}} r \sin\theta \, \sin\varphi, \\ z &= \frac{1}{\sqrt{c}} r \cos\theta, \\ r^{2} &= ax^2 + by^2 + cz^2. \end{align}</math> An infinitesimal volume element is given by <math display="block"> \mathrm{d}V = \left|\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}\right| \, dr\,d\theta\,d\varphi = \frac{1}{\sqrt{abc}} r^2 \sin \theta \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\varphi = \frac{1}{\sqrt{abc}} r^2 \,\mathrm{d}r \,\mathrm{d}\Omega. </math> The square-root factor comes from the property of the [[determinant]] that allows a constant to be pulled out from a column: <math display="block"> \begin{vmatrix} ka & b & c \\ kd & e & f \\ kg & h & i \end{vmatrix} = k \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)