Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Split-complex number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further reading== * Bencivenga, Uldrico (1946) "Sulla rappresentazione geometrica delle algebre doppie dotate di modulo", ''Atti della Reale Accademia delle Scienze e Belle-Lettere di Napoli'', Ser (3) v.2 No7. {{MathSciNet|id=0021123}}. * [[Walter Benz]] (1973) ''Vorlesungen uber Geometrie der Algebren'', Springer * N. A. Borota, E. Flores, and T. J. Osler (2000) "Spacetime numbers the easy way", [[Mathematics and Computer Education]] 34: 159–168. * N. A. Borota and T. J. Osler (2002) "Functions of a spacetime variable", ''Mathematics and Computer Education'' 36: 231–239. * K. Carmody, (1988) [https://heyokatc.com/pdfs/MISC/Circular_and_Hyperbolic_Quaternions_Octonions_and_Sedenions_-_carmody-amac-1988.pdf "Circular and hyperbolic quaternions, octonions, and sedenions"], Appl. Math. Comput. 28:47–72. * K. Carmody, (1997) "Circular and hyperbolic quaternions, octonions, and sedenions – further results", Appl. Math. Comput. 84:27–48. * [[William Kingdon Clifford]] (1882) ''Mathematical Works'', A. W. Tucker editor, page 392, "Further Notes on Biquaternions" * V.Cruceanu, P. Fortuny & P.M. Gadea (1996) [http://www.projecteuclid.org/euclid.rmjm/1181072105 A Survey on Paracomplex Geometry], [[Rocky Mountain Journal of Mathematics]] 26(1): 83–115, link from [[Project Euclid]]. * De Boer, R. (1987) "An also known as list for perplex numbers", ''American Journal of Physics'' 55(4):296. * Anthony A. Harkin & Joseph B. Harkin (2004) [http://people.rit.edu/harkin/research/articles/generalized_complex_numbers.pdf Geometry of Generalized Complex Numbers], [[Mathematics Magazine]] 77(2):118–29. * F. Reese Harvey. ''Spinors and calibrations.'' Academic Press, San Diego. 1990. {{isbn|0-12-329650-1}}. Contains a description of normed algebras in indefinite signature, including the Lorentz numbers. * Hazewinkle, M. (1994) "Double and dual numbers", [[Encyclopaedia of Mathematics]], Soviet/AMS/Kluwer, Dordrect. * [[Kevin McCrimmon]] (2004) ''A Taste of Jordan Algebras'', pp 66, 157, Universitext, Springer {{isbn|0-387-95447-3}} {{mr|id=2014924}} * C. Musès, "Applied hypernumbers: Computational concepts", Appl. Math. Comput. 3 (1977) 211–226. * C. Musès, "Hypernumbers II—Further concepts and computational applications", Appl. Math. Comput. 4 (1978) 45–66. * Olariu, Silviu (2002) ''Complex Numbers in N Dimensions'', Chapter 1: Hyperbolic Complex Numbers in Two Dimensions, pages 1–16, North-Holland Mathematics Studies #190, [[Elsevier]] {{isbn|0-444-51123-7}}. * Poodiack, Robert D. & Kevin J. LeClair (2009) "Fundamental theorems of algebra for the perplexes", [[The College Mathematics Journal]] 40(5):322–35. * [[Isaak Yaglom]] (1968) ''Complex Numbers in Geometry'', translated by E. Primrose from 1963 Russian original, [[Academic Press]], pp. 18–20. * {{cite book|editor=Marco Ceccarelli and Victor A. Glazunov|title=Advances on Theory and Practice of Robots and Manipulators: Proceedings of Romansy 2014 XX CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators|year=2014 | publisher=Springer | isbn=978-3-319-07058-2|chapter=Generalised Complex Numbers in Mechanics|author=J. Rooney|series=Mechanisms and Machine Science | volume=22|pages=55–62|doi=10.1007/978-3-319-07058-2_7}} {{Number systems}} {{DEFAULTSORT:Split-Complex Number}} [[Category:Composition algebras]] [[Category:Linear algebra]] [[Category:Hypercomplex numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)