Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stable distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other analytic cases == A number of cases of analytically expressible stable distributions are known. Let the stable distribution be expressed by <math>f(x;\alpha,\beta,c,\mu)</math>, then: * The [[Cauchy Distribution]] is given by <math>f(x;1,0,1,0).</math> * The [[Lévy distribution]] is given by <math>f(x;\tfrac{1}{2},1,1,0).</math> * The [[Normal distribution]] is given by <math>f(x;2,0,1,0).</math> * Let <math>S_{\mu,\nu}(z)</math> be a [[Lommel function]], then:<ref name="Garoni2002">{{cite journal |last1=Garoni |first1=T. M. |last2=Frankel |first2=N. E. |date=2002 |title=Lévy flights: Exact results and asymptotics beyond all orders |journal=Journal of Mathematical Physics |volume=43 |issue=5 |pages=2670–2689 |doi= 10.1063/1.1467095|bibcode=2002JMP....43.2670G}}</ref> <math display="block"> f \left (x;\tfrac{1}{3},0,1,0\right ) = \Re\left ( \frac{2e^{- \frac{i \pi}{4}}}{3 \sqrt{3} \pi} \frac{1}{\sqrt{x^3}} S_{0,\frac{1}{3}} \left (\frac{2e^{\frac{i \pi}{4}}}{3 \sqrt{3}} \frac{1}{\sqrt{x}} \right) \right )</math> * Let <math>S(x)</math> and <math>C(x)</math> denote the [[Fresnel integral]]s, then:<ref name="Hopcraft1999">{{cite journal |last1=Hopcraft |first1=K. I. |last2=Jakeman |first2=E.|last3=Tanner|first3=R. M. J. |date=1999 |title=Lévy random walks with fluctuating step number and multiscale behavior |journal=Physical Review E |volume=60 |issue=5 |pages=5327–5343 |doi= 10.1103/physreve.60.5327|pmid=11970402 |bibcode=1999PhRvE..60.5327H}}</ref> <math display="block">f\left (x;\tfrac{1}{2},0,1,0\right ) = \frac{1}{{\sqrt{2\pi|x|^3}}}\left (\sin\left(\tfrac{1}{4|x|}\right) \left [\frac{1}{2} - S\left (\tfrac{1}{\sqrt{2\pi|x|}}\right )\right ]+\cos\left(\tfrac{1}{4|x|} \right) \left [\frac{1}{2}-C\left (\tfrac{1}{\sqrt{2\pi|x|}}\right )\right ]\right )</math> * Let <math>K_v(x)</math> be the [[modified Bessel function]] of the second kind, then:<ref name="Hopcraft1999"/> <math display="block">f\left (x;\tfrac{1}{3},1,1,0\right ) = \frac{1}{\pi} \frac{2\sqrt{2}}{3^{\frac{7}{4}}} \frac{1}{\sqrt{x^3}} K_{\frac{1}{3}}\left (\frac{4\sqrt{2}}{3^{\frac{9}{4}}} \frac{1}{\sqrt{x}} \right )</math> * Let <math>{}_mF_n</math> denote the [[hypergeometric function]]s, then:<ref name="Garoni2002"/> <math display="block">\begin{align} f\left (x;\tfrac{4}{3},0,1,0\right ) &= \frac{3^{\frac{5}{4}}}{4 \sqrt{2 \pi}} \frac{\Gamma \left (\tfrac{7}{12} \right ) \Gamma \left (\tfrac{11}{12} \right )}{\Gamma\left (\tfrac{6}{12} \right ) \Gamma \left (\tfrac{8}{12} \right )} {}_2F_2 \left ( \tfrac{7}{12}, \tfrac{11}{12}; \tfrac{6}{12}, \tfrac{8}{12}; \tfrac{3^3 x^4}{4^4} \right ) - \frac{3^{\frac{11}{4}}x^3}{4^3 \sqrt{2 \pi}} \frac{\Gamma \left (\tfrac{13}{12} \right ) \Gamma \left (\tfrac{17}{12} \right )}{\Gamma \left (\tfrac{18}{12} \right ) \Gamma \left (\tfrac{15}{12} \right )} {}_2F_2 \left ( \tfrac{13}{12}, \tfrac{17}{12}; \tfrac{18}{12}, \tfrac{15}{12}; \tfrac{3^3 x^4}{4^4} \right ) \\[6pt] f\left (x;\tfrac{3}{2},0,1,0\right ) &= \frac{\Gamma \left(\tfrac{5}{3} \right)}{\pi} {}_2F_3 \left ( \tfrac{5}{12}, \tfrac{11}{12}; \tfrac{1}{3}, \tfrac{1}{2}, \tfrac{5}{6}; - \tfrac{2^2 x^6}{3^6} \right ) - \frac{x^2}{3 \pi} {}_3F_4 \left ( \tfrac{3}{4}, 1, \tfrac{5}{4}; \tfrac{2}{3}, \tfrac{5}{6}, \tfrac{7}{6}, \tfrac{4}{3}; - \tfrac{2^2 x^6}{3^6} \right ) + \frac{7 x^4\Gamma \left(\tfrac{4}{3} \right)}{3^4 \pi ^ 2} {}_2F_3 \left ( \tfrac{13}{12}, \tfrac{19}{12}; \tfrac{7}{6}, \tfrac{3}{2}, \tfrac{5}{3}; -\tfrac{2^2 x^6}{3^6} \right) \end{align}</math> with the latter being the [[Holtsmark distribution]]. * Let <math>W_{k,\mu}(z)</math> be a [[Whittaker function]], then:<ref name="Zolotarev1999">{{cite journal |last1=Uchaikin |first1=V. V. |last2=Zolotarev |first2=V. M. |date=1999 |title=Chance And Stability – Stable Distributions And Their Applications |journal=VSP }}</ref><ref>{{cite journal |last=Zlotarev |first=V. M. |date=1961 |title=Expression of the density of a stable distribution with exponent alpha greater than one by means of a frequency with exponent 1/alpha |journal=Selected Translations in Mathematical Statistics and Probability (Translated from the Russian Article: Dokl. Akad. Nauk SSSR. 98, 735–738 (1954)) | volume=1 |pages=163–167 }}</ref><ref>{{cite journal |last1=Zaliapin |first1=I. V. |last2=Kagan |first2=Y. Y. |last3=Schoenberg | first3=F. P. |date=2005 |title=Approximating the Distribution of Pareto Sums |url= http://www.escholarship.org/uc/item/8940b4k8 | journal=Pure and Applied Geophysics |volume=162 |issue=6 |pages=1187–1228 |doi= 10.1007/s00024-004-2666-3 | bibcode=2005PApGe.162.1187Z |s2cid=18754585 }}</ref> <math display="block">\begin{align} f\left (x;\tfrac{2}{3},0,1,0\right ) &= \frac{\sqrt{3}}{6\sqrt{\pi}|x|} \exp\left (\tfrac{2}{27}x^{-2}\right ) W_{-\frac{1}{2},\frac{1}{6}}\left (\tfrac{4}{27}x^{-2}\right ) \\[8pt] f\left (x;\tfrac{2}{3},1,1,0\right ) &= \frac{\sqrt{3}}{\sqrt{\pi}|x|} \exp\left (-\tfrac{16}{27}x^{-2}\right ) W_{\frac{1}{2},\frac{1}{6}} \left (\tfrac{32}{27}x^{-2}\right ) \\[8pt] f\left (x;\tfrac{3}{2},1,1,0\right ) &= \begin{cases} \frac{\sqrt{3}}{\sqrt{\pi}|x|} \exp\left (\frac{1}{27}x^3\right ) W_{\frac{1}{2},\frac{1}{6}}\left (- \frac{2}{27}x^3\right ) & x<0\\ {} \\ \frac{\sqrt{3}}{6\sqrt{\pi}|x|} \exp\left (\frac{1}{27}x^3\right ) W_{-\frac{1}{2},\frac{1}{6}}\left (\frac{2}{27}x^3\right ) & x \geq 0 \end{cases} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)