Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
State-space representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Moving object example === A classical linear system is that of one-dimensional movement of an object (e.g., a cart). [[Newton's laws of motion]] for an object moving horizontally on a plane and attached to a wall with a spring: <math display="block">m \ddot{y}(t) = u(t) - b\dot{y}(t) - k y(t)</math> where *<math>y(t)</math> is position; <math>\dot y(t)</math> is velocity; <math>\ddot{y}(t)</math> is acceleration *<math>u(t)</math> is an applied force *<math>b</math> is the viscous friction coefficient *<math>k</math> is the spring constant *<math>m</math> is the mass of the object The state equation would then become <math display="block">\begin{bmatrix} \dot{\mathbf x}_1(t) \\ \dot{\mathbf x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \mathbf{u}(t)</math> <math display="block">\mathbf{y}(t) = \left[ \begin{matrix} 1 & 0 \end{matrix} \right] \left[ \begin{matrix} \mathbf{x_1}(t) \\ \mathbf{x_2}(t) \end{matrix} \right]</math> where *<math>x_1(t)</math> represents the position of the object *<math>x_2(t) = \dot{x}_1(t)</math> is the velocity of the object *<math>\dot{x}_2(t) = \ddot{x}_1(t)</math> is the acceleration of the object *the output <math>\mathbf{y}(t)</math> is the position of the object The [[controllability]] test is then <math display="block">\begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{m} \\ \frac{1}{m} & -\frac{b}{m^2} \end{bmatrix}</math> which has full rank for all <math>b</math> and <math>m</math>. This means, that if initial state of the system is known (<math>y(t)</math>, <math>\dot y(t)</math>, <math>\ddot{y}(t)</math>), and if the <math>b</math> and <math>m</math> are constants, then there is a force <math>u</math> that could move the cart into any other position in the system. The [[observability]] test is then <math display="block">\begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math> which also has full rank. Therefore, this system is both controllable and observable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)