Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Connections between star loss cone and gravitational gas accretion physics == First consider a heavy black hole of mass <math> M_\bullet</math> is moving through a dissipational gas of (rescaled) thermal sound speed <math> \text{Ο'} </math> and density <math> \rho_\text{gas} </math>, then every gas particle of mass m will likely transfer its relative momentum <math> m V_\bullet </math> to the BH when coming within a cross-section of radius <math display="block"> s_\bullet \equiv {(G M_\bullet+ G m) \sqrt{\ln\Lambda} \over (V_\bullet^2+\text{Ο'}^2)/2},</math> In a time scale <math> t_\text{fric} </math> that the black hole loses half of its streaming velocity, its mass may double by Bondi accretion, a process of capturing most of gas particles that enter its sphere of influence <math> s_\bullet </math>, dissipate kinetic energy by gas collisions and fall in the black hole. The gas capture rate is <math display="block"> {M_\bullet \over t_\text{Bondi}^{gas} } =\sqrt{\text{Ο'}^2 + V_\bullet^2}(\pi s_\bullet^2) \rho_\text{gas} =4\pi \rho_\text{gas} \left[ {(G M_\bullet)^2 \over (\text{Ο'}^2 + V_\bullet^2)^{3 \over 2} } \right] \ln\Lambda, ~~ \text{Ο'} \equiv \sigma \sqrt{1+ \gamma^3 \over 2 (9/8)^{2/3}} \approx [\text{Ο} , \gamma \sigma]_\text{max}, </math> where the polytropic index <math> \gamma </math> is the sound speed in units of velocity dispersion squared, and the rescaled sound speed <math>\text{Ο'} </math> allows us to match the Bondi spherical accretion rate, <math> \dot{M}_\bullet \approx \pi \rho_\text{gas} \text{Ο} \left[ {(G M_\bullet) \over \text{Ο}^2} \right]^2 </math> for the adiabatic gas <math>\gamma=5/3</math>, compared to <math> \dot{M}_\bullet \approx 4\pi \rho_\text{gas} \text{Ο} \left[ {(G M_\bullet) \over \text{Ο}^2} \right]^2 </math> of the isothermal case <math> \gamma=1 </math>. Coming back to star tidal disruption and star capture by a (moving) black hole, setting <math> \ln \Lambda =1 </math>, we could summarise the BH's growth rate from gas and stars, <math> {M_\bullet \over t_\text{Bondi}^{gas} } + {M_\bullet \over t_\text{loss}^{*} } </math> with, <math display="block"> \dot{M}_\bullet =\sqrt{\text{Ο'}^2 + V_\bullet^2} m n (\pi s_\bullet^2, \pi s_\text{Hill}^2 , \pi s_\text{Loss}^2)_\text{max}, ~~s_\bullet \approx {(G M_\bullet+ G m) \over (V_\bullet^2+\text{Ο'}^2)/2}, </math> because the black hole consumes a fractional/most part of star/gas particles passing its sphere of influence.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)