Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Asymptotics of the SAA optimal value ==== Suppose the sample <math>\xi^1,\dots,\xi^N</math> is i.i.d. and fix a point <math>x \in X</math>. Then the sample average estimator <math>\hat{g}_N(x)</math>, of <math>g(x)</math>, is unbiased and has variance <math>\frac{1}{N}\sigma^2(x)</math>, where <math>\sigma^2(x):=Var[Q(x,\xi)]</math> is supposed to be finite. Moreover, by the [[central limit theorem]] we have that <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math> \sqrt{N} [\hat{g}_N- g(x)] \xrightarrow{\mathcal{D}} Y_x </math></div> where <math>\xrightarrow{\mathcal{D}}</math> denotes convergence in ''distribution'' and <math>Y_x</math> has a normal distribution with mean <math>0</math> and variance <math>\sigma^2(x)</math>, written as <math>\mathcal{N}(0,\sigma^2(x))</math>. In other words, <math>\hat{g}_N(x)</math> has ''asymptotically normal'' distribution, i.e., for large <math>N</math>, <math>\hat{g}_N(x)</math> has approximately normal distribution with mean <math>g(x)</math> and variance <math>\frac{1}{N}\sigma^2(x)</math>. This leads to the following (approximate) <math>100(1-\alpha)</math>% confidence interval for <math>f(x)</math>: <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"> <math> \left[ \hat{g}_N(x)-z_{\alpha/2} \frac{\hat{\sigma}(x)}{\sqrt{N}}, \hat{g}_N(x)+z_{\alpha/2} \frac{\hat{\sigma}(x)}{\sqrt{N}}\right] </math></div> where <math>z_{\alpha/2}:=\Phi^{-1}(1-\alpha/2)</math> (here <math>\Phi(\cdot)</math> denotes the cdf of the standard normal distribution) and <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><math> \hat{\sigma}^2(x) := \frac{1}{N-1}\sum_{j=1}^{N} \left[ Q(x,\xi^j)-\frac{1}{N} \sum_{j=1}^N Q(x,\xi^j) \right]^2 </math></div> is the sample variance estimate of <math>\sigma^2(x)</math>. That is, the error of estimation of <math>g(x)</math> is (stochastically) of order <math> O(\sqrt{N})</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)