Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Support vector machine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Modern methods === Recent algorithms for finding the SVM classifier include sub-gradient descent and coordinate descent. Both techniques have proven to offer significant advantages over the traditional approach when dealing with large, sparse datasets—sub-gradient methods are especially efficient when there are many training examples, and coordinate descent when the dimension of the feature space is high. ==== Sub-gradient descent ==== [[Subgradient method|Sub-gradient descent]] algorithms for the SVM work directly with the expression <math display="block">f(\mathbf{w}, b) = \left[\frac 1 n \sum_{i=1}^n \max\left(0, 1 - y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i - b)\right) \right] + \lambda \|\mathbf{w}\|^2.</math> Note that <math>f</math> is a [[convex function]] of <math>\mathbf{w}</math> and <math>b</math>. As such, traditional [[gradient descent]] (or [[Stochastic gradient descent|SGD]]) methods can be adapted, where instead of taking a step in the direction of the function's gradient, a step is taken in the direction of a vector selected from the function's [[Subderivative|sub-gradient]]. This approach has the advantage that, for certain implementations, the number of iterations does not scale with <math>n</math>, the number of data points.<ref>{{Cite journal |title=Pegasos: primal estimated sub-gradient solver for SVM |journal=Mathematical Programming |date=2010-10-16 |issn=0025-5610 |pages=3–30 |volume=127 |issue=1 |doi=10.1007/s10107-010-0420-4 |first1=Shai |last1=Shalev-Shwartz |first2=Yoram |last2=Singer |first3=Nathan |last3=Srebro |first4=Andrew |last4=Cotter |citeseerx=10.1.1.161.9629 |s2cid=53306004 }}</ref> ==== Coordinate descent ==== [[Coordinate descent]] algorithms for the SVM work from the dual problem <math display="block"> \begin{align} &\text{maximize}\,\, f(c_1 \ldots c_n) = \sum_{i=1}^n c_i - \frac 1 2 \sum_{i=1}^n\sum_{j=1}^n y_i c_i(x_i \cdot x_j)y_j c_j,\\ &\text{subject to } \sum_{i=1}^n c_iy_i = 0,\,\text{and } 0 \leq c_i \leq \frac{1}{2n\lambda}\;\text{for all }i. \end{align}</math> For each <math> i \in \{1,\, \ldots,\, n\}</math>, iteratively, the coefficient <math> c_i</math> is adjusted in the direction of <math> \partial f/ \partial c_i</math>. Then, the resulting vector of coefficients <math> (c_1',\,\ldots,\,c_n')</math> is projected onto the nearest vector of coefficients that satisfies the given constraints. (Typically Euclidean distances are used.) The process is then repeated until a near-optimal vector of coefficients is obtained. The resulting algorithm is extremely fast in practice, although few performance guarantees have been proven.<ref>{{Cite book |publisher=ACM |date=2008-01-01 |location=New York, NY, USA |isbn=978-1-60558-205-4 |pages=408–415 |doi=10.1145/1390156.1390208 |first1=Cho-Jui |last1=Hsieh |first2=Kai-Wei |last2=Chang |first3=Chih-Jen |last3=Lin |first4=S. Sathiya |last4=Keerthi |first5=S. |last5=Sundararajan |title=Proceedings of the 25th international conference on Machine learning - ICML '08 |chapter=A dual coordinate descent method for large-scale linear SVM |citeseerx=10.1.1.149.5594 |s2cid=7880266 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)