Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations of Taylor's theorem == === Higher-order differentiability === A function {{math|''f'': '''R'''<sup>''n''</sup> β '''R'''}} is [[derivative|differentiable]] at {{math|'''''a''''' β '''R'''<sup>''n''</sup>}} [[if and only if]] there exists a [[linear functional]] {{math|''L'' : '''R'''<sup>''n''</sup> β '''R'''}} and a function {{math|''h'' : '''R'''<sup>''n''</sup> β '''R'''}} such that <math display="block"> f(\boldsymbol{x}) = f(\boldsymbol{a}) + L(\boldsymbol{x}-\boldsymbol{a}) + h(\boldsymbol{x})\lVert\boldsymbol{x}-\boldsymbol{a}\rVert, \qquad \lim_{\boldsymbol{x}\to\boldsymbol{a}} h(\boldsymbol{x})=0. </math> If this is the case, then <math display="inline">L = df(\boldsymbol{a})</math> is the (uniquely defined) [[differential of a function|differential]] of {{math|''f''}} at the point {{math|'''''a'''''}}. Furthermore, then the [[partial derivatives]] of {{math|''f''}} exist at {{math|'''''a'''''}} and the differential of {{math|''f''}} at {{math|'''''a'''''}} is given by <math display="block"> df( \boldsymbol{a} )( \boldsymbol{v} ) = \frac{\partial f}{\partial x_1}(\boldsymbol{a}) v_1 + \cdots + \frac{\partial f}{\partial x_n}(\boldsymbol{a}) v_n. </math> Introduce the [[multi-index notation]] <math display="block"> |\alpha| = \alpha_1+\cdots+\alpha_n, \quad \alpha!=\alpha_1!\cdots\alpha_n!, \quad \boldsymbol{x}^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n} </math> for {{math|''Ξ±'' β '''N'''<sup>''n''</sup>}} and {{math|'''''x''''' β '''R'''<sup>''n''</sup>}}. If all the <math display="inline">k</math>-th order [[partial derivatives]] of {{math|''f'' : '''R'''<sup>''n''</sup> β '''R'''}} are continuous at {{math|'''''a''''' β '''R'''<sup>''n''</sup>}}, then by [[symmetry of second derivatives|Clairaut's theorem]], one can change the order of mixed derivatives at {{math|'''''a'''''}}, so the short-hand notation <math display="block"> D^\alpha f = \frac{\partial^{|\alpha|}f}{\partial\boldsymbol x^\alpha} = \frac{\partial^{\alpha_1 + \ldots + \alpha_n}f}{\partial x_1^{\alpha_1}\cdots \partial x_n^{\alpha_n}}</math> for the higher order [[partial derivatives]] is justified in this situation. The same is true if all the ({{math|''k'' β 1}})-th order partial derivatives of {{math|''f''}} exist in some neighborhood of {{math|'''''a'''''}} and are differentiable at {{math|'''''a'''''}}.<ref>This follows from iterated application of the theorem that if the partial derivatives of a function {{math|''f''}} exist in a neighborhood of {{math|'''''a'''''}} and are continuous at {{math|'''''a'''''}}, then the function is differentiable at {{math|'''''a'''''}}. See, for instance, {{harvnb|Apostol|1974|loc=Theorem 12.11}}.</ref> Then we say that {{math|''f''}} is {{math|''k''}} '''times differentiable at the point {{math|''a''}}'''. === Taylor's theorem for multivariate functions === Using notations of the preceding section, one has the following theorem. {{math theorem|name=Multivariate version of Taylor's theorem<ref>KΓΆnigsberger Analysis 2, p. 64 ff.</ref>|math_statement= Let {{math|''f'' : '''R'''<sup>''n''</sup> β '''R'''}} be a {{math|''k''}}-times [[continuously differentiable]] function at the point {{math|'''''a''''' β '''R'''<sup>''n''</sup>}}. Then there exist functions {{math|''h''<sub>''Ξ±''</sub> : '''R'''<sup>''n''</sup> β '''R'''}}, where <math>|\alpha|=k,</math> such that <math display="block">\begin{align} & f(\boldsymbol{x}) = \sum_{|\alpha|\leq k} \frac{D^\alpha f(\boldsymbol{a})}{\alpha!} (\boldsymbol{x}-\boldsymbol{a})^\alpha + \sum_{|\alpha|=k} h_\alpha(\boldsymbol{x})(\boldsymbol{x}-\boldsymbol{a})^\alpha, \\ & \mbox{and}\quad \lim_{\boldsymbol{x}\to \boldsymbol{a}}h_\alpha(\boldsymbol{x})=0. \end{align}</math>}} If the function {{math|''f'' : '''R'''<sup>''n''</sup> β '''R'''}} is {{math|''k'' + 1}} times [[continuously differentiable]] in a [[closed ball]] <math>B = \{ \mathbf{y} \in \R^n : \left\|\mathbf{a}-\mathbf{y}\right\| \leq r\}</math> for some <math>r > 0</math>, then one can derive an exact formula for the remainder in terms of {{nowrap|({{math|''k''+1}})-th}} order [[partial derivatives]] of ''f'' in this neighborhood.<ref>{{cite web | title = Higher-Order Derivatives and Taylor's Formula in Several Variables | last = Folland | first = G. B. | url = https://sites.math.washington.edu/~folland/Math425/taylor2.pdf | website = Department of Mathematics {{!}} University of Washington | access-date = 2024-02-21 }}</ref> Namely, <math display="block"> \begin{align} & f( \boldsymbol{x} ) = \sum_{|\alpha|\leq k} \frac{D^\alpha f(\boldsymbol{a})}{\alpha!} (\boldsymbol{x}-\boldsymbol{a})^\alpha + \sum_{|\beta|=k+1} R_\beta(\boldsymbol{x})(\boldsymbol{x}-\boldsymbol{a})^\beta, \\ & R_\beta( \boldsymbol{x} ) = \frac{|\beta|}{\beta!} \int_0^1 (1-t)^{|\beta|-1}D^\beta f \big(\boldsymbol{a}+t( \boldsymbol{x}-\boldsymbol{a} )\big) \, dt. \end{align} </math> In this case, due to the [[continuous function|continuity]] of ({{math|''k''+1}})-th order [[partial derivative]]s in the [[compact set]] {{math|''B''}}, one immediately obtains the uniform estimates <math display="block"> \left|R_\beta(\boldsymbol{x})\right| \leq \frac{1}{\beta!} \max_{|\alpha|=|\beta|} \max_{\boldsymbol{y}\in B} |D^\alpha f(\boldsymbol{y})|, \qquad \boldsymbol{x}\in B. </math> === Example in two dimensions === For example, the third-order Taylor polynomial of a smooth function <math>f:\mathbb R^2\to\mathbb R</math> is, denoting <math>\boldsymbol{x}-\boldsymbol{a}=\boldsymbol{v}</math>, <math display="block"> \begin{align} P_3(\boldsymbol{x}) = f ( \boldsymbol{a} ) + {} &\frac{\partial f}{\partial x_1}( \boldsymbol{a} ) v_1 + \frac{\partial f}{\partial x_2}( \boldsymbol{a} ) v_2 + \frac{\partial^2 f}{\partial x_1^2}( \boldsymbol{a} ) \frac {v_1^2}{2!} + \frac{\partial^2 f}{\partial x_1 \partial x_2}( \boldsymbol{a} ) v_1 v_2 + \frac{\partial^2 f}{\partial x_2^2}( \boldsymbol{a} ) \frac{v_2^2}{2!} \\ & + \frac{\partial^3 f}{\partial x_1^3}( \boldsymbol{a} ) \frac{v_1^3}{3!} + \frac{\partial^3 f}{\partial x_1^2 \partial x_2}( \boldsymbol{a} ) \frac{v_1^2 v_2}{2!} + \frac{\partial^3 f}{\partial x_1 \partial x_2^2}( \boldsymbol{a} ) \frac{v_1 v_2^2}{2!} + \frac{\partial^3 f}{\partial x_2^3}( \boldsymbol{a} ) \frac{v_2^3}{3!} \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)