Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tensor algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Hopf algebra== The [[Hopf algebra]] adds an antipode to the bialgebra axioms. The antipode <math>S</math> on <math>k\in K=T^0V</math> is given by :<math>S(k)=k</math> This is sometimes called the "anti-identity". The antipode on <math>v\in V=T^1V</math> is given by :<math>S(v)=-v</math> and on <math>v \otimes w\in T^2V</math> by :<math>S(v \otimes w) = S(w) \otimes S(v) = w\otimes v</math> This extends homomorphically to :<math> \begin{align} S(v_1 \otimes \cdots \otimes v_m) &= S(v_m) \otimes\cdots\otimes S(v_1) \\ &= (-1)^m v_m \otimes\cdots\otimes v_1 \end{align}</math> === Compatibility === Compatibility of the antipode with multiplication and comultiplication requires that :<math>\nabla \circ (S \boxtimes \mathrm{id}) \circ \Delta = \eta \circ \epsilon = \nabla \circ (\mathrm{id} \boxtimes S) \circ \Delta</math> This is straightforward to verify componentwise on <math>k\in K</math>: :<math> \begin{align} (\nabla \circ (S \boxtimes \mathrm{id}) \circ \Delta)(k) &= (\nabla \circ (S \boxtimes \mathrm{id})) (1\boxtimes k) \\ &= \nabla(1 \boxtimes k) \\ &= 1 \otimes k \\ &= k \end{align}</math> Similarly, on <math>v\in V</math>: :<math> \begin{align} (\nabla \circ (S \boxtimes \mathrm{id}) \circ \Delta)(v) &= (\nabla \circ (S \boxtimes \mathrm{id})) (v\boxtimes 1 + 1 \boxtimes v) \\ &= \nabla(-v \boxtimes 1 + 1 \boxtimes v) \\ &= -v \otimes 1 + 1 \otimes v \\ &= -v + v\\ &= 0 \end{align}</math> Recall that :<math>(\eta \circ \epsilon)(k)=\eta(k)=k</math> and that :<math>(\eta \circ \epsilon)(x)=\eta(0)=0</math> for any <math>x\in TV</math> that is ''not'' in <math>K.</math> One may proceed in a similar manner, by homomorphism, verifying that the antipode inserts the appropriate cancellative signs in the shuffle, starting with the compatibility condition on <math>T^2V</math> and proceeding by induction.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)