Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Nome power theorems== ===Direct power theorems=== For the transformation of the nome<ref>Andreas Dieckmann: ''[http://www-elsa.physik.uni-bonn.de/~dieckman/InfProd/InfProd.html#InfinitexProducts Table of Infinite Products Infinite Sums Infinite Series, Elliptic Theta.]'' Physikalisches Institut Universität Bonn, Abruf am 1. Oktober 2021.</ref> in the theta functions these formulas can be used: :<math>\theta_{2}(q^2) = \tfrac{1}{2}\sqrt{2[\theta_{3}(q)^2 - \theta_{4}(q)^2]}</math> :<math>\theta_{3}(q^2) = \tfrac{1}{2}\sqrt{2[\theta_{3}(q)^2 + \theta_{4}(q)^2]}</math> :<math>\theta_{4}(q^2) = \sqrt{\theta_{4}(q)\theta_{3}(q)}</math> The squares of the three theta zero-value functions with the square function as the inner function are also formed in the pattern of the [[Pythagorean triple]]s according to the Jacobi Identity. Furthermore, those transformations are valid: :<math>\theta_{3}(q^4) = \tfrac{1}{2}\theta_{3}(q) + \tfrac{1}{2}\theta_{4}(q)</math> These formulas can be used to compute the theta values of the cube of the nome: :<math>27\,\theta_{3}(q^3)^8 - 18\,\theta_{3}(q^3)^4\theta_{3}(q)^4 - \,\theta_{3}(q)^8 = 8\,\theta_{3}(q^3)^2\theta_{3}(q)^2[2\,\theta_{4}(q)^4 - \theta_{3}(q)^4]</math> :<math>27\,\theta_{4}(q^3)^8 - 18\,\theta_{4}(q^3)^4\theta_{4}(q)^4 - \,\theta_{4}(q)^8 = 8\,\theta_{4}(q^3)^2\theta_{4}(q)^2[2\,\theta_{3}(q)^4 - \theta_{4}(q)^4]</math> And the following formulas can be used to compute the theta values of the fifth power of the nome: :<math>[\theta_{3}(q)^2 - \theta_{3}(q^5)^2][5\,\theta_{3}(q^5)^2 - \theta_{3}(q)^2]^5 = 256\,\theta_{3}(q^5)^2\theta_{3}(q)^2\theta_{4}(q)^4 [\theta_{3}(q)^4 - \theta_{4}(q)^4]</math> :<math>[\theta_{4}(q^5)^2 - \theta_{4}(q)^2][5\,\theta_{4}(q^5)^2 - \theta_{4}(q)^2]^5 = 256\,\theta_{4}(q^5)^2\theta_{4}(q)^2\theta_{3}(q)^4 [\theta_{3}(q)^4 - \theta_{4}(q)^4]</math> === Transformation at the cube root of the nome === The formulas for the theta Nullwert function values from the cube root of the elliptic nome are obtained by contrasting the two real solutions of the corresponding quartic equations: : <math>\biggl[\frac{\theta_{3}(q^{1/3})^2}{\theta_{3}(q)^2} - \frac{3\,\theta_{3}(q^{3})^2}{\theta_{3}(q)^2}\biggr]^2 = 4 - 4\biggl[\frac{2\,\theta_{2}(q)^2 \theta_{4}(q)^2}{\theta_{3}(q)^4}\biggr]^{2/3} </math> : <math>\biggl[\frac{3\,\theta_{4}(q^{3})^2}{\theta_{4}(q)^2} - \frac{\theta_{4}(q^{1/3})^2}{\theta_{4}(q)^2}\biggr]^2 = 4 + 4\biggl[\frac{2\,\theta_{2}(q)^2 \theta_{3}(q)^2}{\theta_{4}(q)^4}\biggr]^{2/3} </math> === Transformation at the fifth root of the nome === The [[Rogers-Ramanujan continued fraction]] can be defined in terms of the '''Jacobi theta function''' in the following way: : <math>R(q) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{1}{2} - \frac{\theta _{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{1/5} \tan\biggl\{\frac{1}{2}\arccot\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{2/5} </math> : <math>R(q^2) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{2/5} \cot\biggl\{\frac{1}{2}\arccot\biggl[\frac{1}{2} - \frac{\theta_{4}(q)^2}{2\,\theta_{4}(q^5)^2}\biggr]\biggr\}^{1/5} </math> : <math>R(q^2) = \tan\biggl\{\frac{1}{2}\arctan\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{2/5} \tan\biggl\{\frac{1}{2}\arccot\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{1/5} </math> The alternating Rogers-Ramanujan continued fraction function S(q) has the following two identities: : <math>S(q) = \frac{R(q^4)}{R(q^2)R(q)} = \tan\biggl\{\frac{1}{2}\arctan\biggl [\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{1/5} \cot\biggl\{\frac{1}{2}\arccot\biggl[\frac{\theta_{3}(q)^2}{2\,\theta_{3}(q^5)^2} - \frac{1}{2}\biggr]\biggr\}^{2/5}</math> The theta function values from the fifth root of the nome can be represented as a rational combination of the continued fractions R and S and the theta function values from the fifth power of the nome and the nome itself. The following four equations are valid for all values q between 0 and 1: : <math>\frac{\theta_{3}(q^{1/5})}{\theta_{3}(q^5)} - 1 = \frac{1}{S(q)}\bigl[S(q)^2 + R(q^2)\bigr]\bigl[1 + R(q^2)S(q)\bigr] </math> : <math>1 - \frac{\theta_{4}(q^{1/5})}{\theta_{4}(q^5)} = \frac{1}{R(q)}\bigl[R(q^2) + R(q)^2\bigr]\bigl[1 - R(q^2)R(q)\bigr] </math> : <math>\theta_{3}(q^{1/5})^2 - \theta_{3}(q)^2 = \bigl[\theta_{3}(q)^2 - \theta_{3}(q^5)^2\bigr]\biggl[1+\frac{1}{R(q^2)S(q)}+R(q^2)S(q)+\frac{1}{R(q^2)^2}+R(q^2)^2+\frac{1}{S(q)}-S(q)\biggr] </math> : <math>\theta_{4}(q)^2 - \theta_{4}(q^{1/5})^2 = \bigl[\theta_{4}(q^5)^2 - \theta_{4}(q)^2\bigr]\biggl[1-\frac{1}{R(q^2)R(q)}-R(q^2)R(q)+\frac{1}{R(q^2)^2}+R(q^2)^2-\frac{1}{R(q)}+R(q)\biggr] </math> === Modulus dependent theorems=== In combination with the elliptic modulus, the following formulas can be displayed: These are the formulas for the square of the elliptic nome: :<math>\theta_{4}[q(k)] = \theta_{4}[q(k)^2]\sqrt[8]{1 - k^2}</math> :<math>\theta_{4}[q(k)^2] = \theta_{3}[q(k)]\sqrt[8]{1 - k^2}</math> :<math>\theta_{3}[q(k)^2] = \theta_{3}[q(k)]\cos[\tfrac{1}{2}\arcsin(k)]</math> And this is an efficient formula for the cube of the nome: :<math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(t^3)\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(t^3)\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{2\sqrt{t^4 - t^2 + 1} - t^2 + 2} + \sqrt{t^2 + 1}\,\bigr)^{1/2} </math> For all real values <math> t \in \R </math> the now mentioned formula is valid. And for this formula two examples shall be given: First calculation example with the value <math> t = 1 </math> inserted: :{| class="wikitable" | <math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{3} + \sqrt{2}\,\bigr)^{1/2} </math> |- | <math> \theta_{4}\bigl[\exp(-3\sqrt{2}\,\pi)\bigr] = \theta_{4}\bigl[\exp(-\sqrt{2}\,\pi)\bigr] \,3^{-1/2} \bigl(\sqrt{3} + \sqrt{2}\,\bigr)^{1/2} </math> |} Second calculation example with the value <math> t = \Phi^{-2} </math> inserted: :{| class="wikitable" | <math> \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(\Phi^{-6})\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(\Phi^{-6})\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{2\sqrt{\Phi^{-8} - \Phi^{-4} + 1} - \Phi^{-4} + 2} + \sqrt{\Phi^{-4} + 1}\,\bigr)^{1/2} </math> |- | <math> \theta_{4}\bigl[\exp(-3\sqrt{10}\,\pi)\bigr] = \theta_{4}\bigl[\exp(-\sqrt{10}\,\pi)\bigr] \,3^{-1/2} \bigl(\sqrt{2\sqrt{\Phi^{-8} - \Phi^{-4} + 1} - \Phi^{-4} + 2} + \sqrt{\Phi^{-4} + 1}\,\bigr)^{1/2} </math> |} The constant <math> \Phi </math> represents the [[Golden ratio]] number <math> \Phi = \tfrac{1}{2}(\sqrt{5} + 1)</math> exactly.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)