Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Phase space=== In the [[phase space formulation]] of quantum mechanics, the Robertson–Schrödinger relation follows from a positivity condition on a real star-square function. Given a [[Wigner quasi-probability distribution|Wigner function]] <math>W(x,p)</math> with [[Moyal product|star product]] ★ and a function ''f'', the following is generally true:<ref>{{Cite journal | last1 = Curtright | first1 = T. |last2= Zachos | first2= C. | title = Negative Probability and Uncertainty Relations| journal = Modern Physics Letters A | volume = 16 | issue = 37 | pages = 2381–2385 | doi = 10.1142/S021773230100576X | year = 2001 |arxiv = hep-th/0105226 |bibcode = 2001MPLA...16.2381C | s2cid = 119669313 }}</ref> <math display="block">\langle f^* \star f \rangle =\int (f^* \star f) \, W(x,p) \, dx \, dp \ge 0 ~.</math> Choosing <math>f = a + bx + cp</math>, we arrive at <math display="block">\langle f^* \star f \rangle =\begin{bmatrix}a^* & b^* & c^* \end{bmatrix}\begin{bmatrix}1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x \star x \rangle & \langle x \star p \rangle \\ \langle p \rangle & \langle p \star x \rangle & \langle p \star p \rangle \end{bmatrix}\begin{bmatrix}a \\ b \\ c\end{bmatrix} \ge 0 ~.</math> Since this positivity condition is true for ''all'' ''a'', ''b'', and ''c'', it follows that all the eigenvalues of the matrix are non-negative. The non-negative eigenvalues then imply a corresponding non-negativity condition on the [[determinant]], <math display="block">\det\begin{bmatrix}1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x \star x \rangle & \langle x \star p \rangle \\ \langle p \rangle & \langle p \star x \rangle & \langle p \star p \rangle \end{bmatrix} = \det\begin{bmatrix}1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x^2 \rangle & \left\langle xp + \frac{i\hbar}{2} \right\rangle \\ \langle p \rangle & \left\langle xp - \frac{i\hbar}{2} \right\rangle & \langle p^2 \rangle \end{bmatrix} \ge 0~,</math> or, explicitly, after algebraic manipulation, <math display="block">\sigma_x^2 \sigma_p^2 = \left( \langle x^2 \rangle - \langle x \rangle^2 \right)\left( \langle p^2 \rangle - \langle p \rangle^2 \right)\ge \left( \langle xp \rangle - \langle x \rangle \langle p \rangle \right)^2 + \frac{\hbar^2}{4} ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)