Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Addition theorems== Let <math>z,w\in\mathbb{C}</math>, so that <math>z,w,z+w,z-w\notin\Lambda </math>. Then one has:<ref name=":3">{{citation| surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 286|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> <math display="block">\wp(z+w)=\frac14 \left[\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)}\right]^2-\wp(z)-\wp(w).</math> As well as the duplication formula:<ref name=":3" /> <math display="block">\wp(2z)=\frac14\left[\frac{\wp''(z)}{\wp'(z)}\right]^2-2\wp(z).</math> ==== Proofs ==== 1. These formulas can come with a geometric interpretation. If one looks at the elliptic curve <math>C_{g_2,g_3}^{\mathbb{C}} </math> a line <math>\lambda= \{(x,y)\in\mathbb{C}^2:y=mx+q\}</math> intersects it in three points:<math>C_{g_2,g_3}^{\mathbb{C}} \cap \lambda=\{P,Q,R\} </math>. Since these points belong to the elliptic curve they can be labeled as <math>P=(\wp(u),\wp'(u)) \quad Q=(\wp(v),\wp'(v)) \quad</math> <math> R=(\wp(u+v),\wp'(u+v))</math> with <math>(u,v)\notin \Lambda </math>. From the formula of a secant line we have <math>m=\frac{y_P-y_Q}{x_P-x_Q}=\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)}</math> letting <math>C_{g_2,g_3}^{\mathbb{C}} = \lambda </math> we have the equation <math> (mx+q)^2=4x^3-g_2x-g_3</math> which becomes <math> 4x^3-m^2x^2-(2mq+g_2)x-g_3-q^2=0</math> using [[Vieta's formulas]] one obtains: <math> x_P+x_Q+x_R=\frac{m^2}4 </math> which provides the wanted formula <math>\wp(u+v)+\wp(u)+\wp(v)=\frac14 \left[ \frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)} \right]^2 </math> 2. A second proof from Akhiezer's book<ref>Akhiezer's book Elements of the theory of elliptic functions https://www.ams.org/books/mmono/079/mmono079-endmatter.pdf</ref> is the following: if <math> f </math> is arbitrary elliptic function then: <math>f(u)=c\prod_{i=1}^n \frac{\sigma(u-a_i)}{\sigma(u-b_i)} \quad c \in \mathbb{C}</math> where <math> \sigma </math> is one of the [[Weierstrass functions ]] and <math> a_i , b_i</math> are the respective zeros and poles in the period parallelogram. We then let a function <math>k(u,v)=\wp(u)-\wp(v)</math> From the previous lemma we have: <math>k(u,v)= \wp(u)-\wp(v)=c\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2} </math> From some calculations one can find that <math>c=\frac1{\sigma(v)^2} \implies\wp(u)-\wp(v)=\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2\sigma(v)^2}</math> By definition the Weierstrass Zeta function: <math> \frac{d}{dz}\ln \sigma(z)=\zeta(z)</math> therefore we logarithmicly differentiate both sides obtaining: <math>\frac{\wp'(u)}{\wp(u)-\wp(v)}=\zeta(u+v)-2\zeta(u)-\zeta(u-v)</math> Once again by definition <math> \zeta'(z)=-\wp(z)</math> thus by differentiating once more on both sides and rearranging the terms we obtain <math>-\wp(u+v)=-\wp(u)+\frac12 \frac{ \wp''(v)[\wp(u)-\wp(v) ]-\wp'(u)[\wp'(u)-\wp'(v)] }{ [\wp(u)-\wp(v) ]^2 } </math> Knowing that <math>\wp'' </math> has the following differential equation <math>2\wp''=12\wp^2-g_2</math> and rearranging the terms one gets the wanted formula <math display="block">\wp(u+v)=\frac14 \left[\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)}\right]^2-\wp(u)-\wp(v).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)