Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
24-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Tetrahedral constructions ==== The 24-cell can be constructed radially from 96 equilateral triangles of edge length {{sqrt|1}} which meet at the center of the polytope, each contributing two radii and an edge.{{Efn|name=radially equilateral|group=}} They form 96 {{sqrt|1}} tetrahedra (each contributing one 24-cell face), all sharing the 25th central apex vertex. These form 24 octahedral pyramids (half-16-cells) with their apexes at the center. The 24-cell can be constructed from 96 equilateral triangles of edge length {{sqrt|2}}, where the three vertices of each triangle are located 90Β° = <small>{{sfrac|{{pi}}|2}}</small> away from each other on the 3-sphere. They form 48 {{sqrt|2}}-edge tetrahedra (the cells of the [[#16-cell|three 16-cells]]), centered at the 24 mid-edge-radii of the 24-cell.{{Efn|Each of the 72 {{sqrt|2}} chords in the 24-cell is a face diagonal in two distinct cubical cells (of different 8-cells) and an edge of four tetrahedral cells (in just one 16-cell).|name=root 2 chords}} The 24-cell can be constructed directly from its [[#Characteristic orthoscheme|characteristic simplex]] {{CDD|node|3|node|4|node|3|node}}, the [[5-cell#Irregular 5-cells|irregular 5-cell]] which is the [[fundamental region]] of its [[Coxeter group|symmetry group]] [[F4 polytope|F<sub>4</sub>]], by reflection of that 4-[[orthoscheme]] in its own cells (which are 3-orthoschemes).{{Efn|An [[orthoscheme]] is a [[chiral]] irregular [[simplex]] with [[right triangle]] faces that is characteristic of some polytope if it will exactly fill that polytope with the reflections of itself in its own [[facet (geometry)|facet]]s (its ''mirror walls''). Every regular polytope can be dissected radially into instances of its [[Orthoscheme#Characteristic simplex of the general regular polytope|characteristic orthoscheme]] surrounding its center. The characteristic orthoscheme has the shape described by the same [[Coxeter-Dynkin diagram]] as the regular polytope without the ''generating point'' ring.|name=characteristic orthoscheme}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)