Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Adjugate matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation to exterior algebras == The adjugate can be viewed in abstract terms using [[exterior algebra]]s. Let {{math|''V''}} be an {{math|''n''}}-dimensional [[vector space]]. The [[exterior product]] defines a bilinear pairing <math display=block>V \times \wedge^{n-1} V \to \wedge^n V.</math> Abstractly, <math>\wedge^n V</math> is [[isomorphic]] to {{math|'''R'''}}, and under any such isomorphism the exterior product is a [[perfect pairing]]. That is, it yields an isomorphism <math display=block>\phi \colon V\ \xrightarrow{\cong}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V).</math> This isomorphism sends each {{math|'''v''' β ''V''}} to the map <math>\phi_{\mathbf{v}}</math> defined by <math display=block>\phi_\mathbf{v}(\alpha) = \mathbf{v} \wedge \alpha.</math> Suppose that {{math|''T'' : ''V'' → ''V''}} is a [[linear transformation]]. [[Pullback]] by the {{math|(''n'' β 1)}}th exterior power of {{math|''T''}} induces a morphism of {{math|Hom}} spaces. The '''adjugate''' of {{math|''T''}} is the composite <math display=block>V\ \xrightarrow{\phi}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{(\wedge^{n-1} T)^*}\ \operatorname{Hom}(\wedge^{n-1} V, \wedge^n V)\ \xrightarrow{\phi^{-1}}\ V.</math> If {{math|1=''V'' = '''R'''<sup>''n''</sup>}} is endowed with its [[canonical basis]] {{math|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}}, and if the matrix of {{math|''T''}} in this [[basis (linear algebra)|basis]] is {{math|'''A'''}}, then the adjugate of {{math|''T''}} is the adjugate of {{math|'''A'''}}. To see why, give <math>\wedge^{n-1} \mathbf{R}^n</math> the basis <math display=block>\{\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n\}_{k=1}^n.</math> Fix a basis vector {{math|'''e'''<sub>''i''</sub>}} of {{math|'''R'''<sup>''n''</sup>}}. The image of {{math|'''e'''<sub>''i''</sub>}} under <math>\phi</math> is determined by where it sends basis vectors: <math display=block>\phi_{\mathbf{e}_i}(\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n) = \begin{cases} (-1)^{i-1} \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n, &\text{if}\ k = i, \\ 0 &\text{otherwise.} \end{cases}</math> On basis vectors, the {{math|(''n'' β 1)}}st exterior power of {{math|''T''}} is <math display=block>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto \sum_{k=1}^n (\det A_{jk}) \mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_k \wedge \dots \wedge \mathbf{e}_n.</math> Each of these terms maps to zero under <math>\phi_{\mathbf{e}_i}</math> except the {{math|1=''k'' = ''i''}} term. Therefore, the pullback of <math>\phi_{\mathbf{e}_i}</math> is the linear transformation for which <math display=block>\mathbf{e}_1 \wedge \dots \wedge \hat\mathbf{e}_j \wedge \dots \wedge \mathbf{e}_n \mapsto (-1)^{i-1} (\det A_{ji}) \mathbf{e}_1 \wedge \dots \wedge \mathbf{e}_n.</math> That is, it equals <math display=block>\sum_{j=1}^n (-1)^{i+j} (\det A_{ji})\phi_{\mathbf{e}_j}.</math> Applying the inverse of <math>\phi</math> shows that the adjugate of {{math|''T''}} is the linear transformation for which <math display=block>\mathbf{e}_i \mapsto \sum_{j=1}^n (-1)^{i+j}(\det A_{ji})\mathbf{e}_j.</math> Consequently, its matrix representation is the adjugate of {{math|'''A'''}}. If {{math|''V''}} is endowed with an [[inner product]] and a volume form, then the map {{math|''Ο''}} can be decomposed further. In this case, {{math|''Ο''}} can be understood as the composite of the [[Hodge star operator]] and dualization. Specifically, if {{math|Ο}} is the volume form, then it, together with the inner product, determines an isomorphism <math display=block>\omega^\vee \colon \wedge^n V \to \mathbf{R}.</math> This induces an isomorphism <math display=block>\operatorname{Hom}(\wedge^{n-1} \mathbf{R}^n, \wedge^n \mathbf{R}^n) \cong \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> A vector {{math|'''v'''}} in {{math|'''R'''<sup>''n''</sup>}} corresponds to the linear functional <math display=block>(\alpha \mapsto \omega^\vee(\mathbf{v} \wedge \alpha)) \in \wedge^{n-1} (\mathbf{R}^n)^\vee.</math> By the definition of the Hodge star operator, this linear functional is dual to {{math|*'''v'''}}. That is, {{math|Ο<sup>β¨</sup>β Ο}} equals {{math|'''v''' β¦ *'''v'''<sup>β¨</sup>}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)