Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Automobile handling
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Aerodynamics === [[Aerodynamic]] forces are generally proportional to the square of the air speed, therefore car aerodynamics become rapidly more important as speed increases. Like darts, airplanes, etc., cars can be stabilised by fins and other rear aerodynamic devices. However, in addition to this cars also use downforce or "negative lift" to improve road holding. This is prominent on many types of racing cars, but is also used on most passenger cars to some degree, if only to counteract the tendency for the car to otherwise produce positive lift. In addition to providing increased adhesion, car aerodynamics are frequently designed to compensate for the inherent increase in oversteer as cornering speed increases. When a car corners, it must rotate about its vertical axis as well as translate its [[center of mass]] in an arc. However, in a tight-radius (lower speed) corner the [[angular velocity]] of the car is high, while in a longer-radius (higher speed) corner the [[angular velocity]] is much lower. Therefore, the front tires have a more difficult time overcoming the car's [[moment of inertia]] during corner entry at low speed, and much less difficulty as the cornering speed increases. So the natural tendency of any car is to understeer on entry to low-speed corners and oversteer on entry to high-speed corners. To compensate for this unavoidable effect, car designers often bias the car's handling toward less corner-entry understeer (such as by lowering the front [[roll center]]), and add rearward bias to the aerodynamic downforce to compensate in higher-speed corners. The rearward aerodynamic bias may be achieved by an airfoil or "spoiler" mounted near the rear of the car, but a useful effect can also be achieved by careful shaping of the body as a whole, particularly the aft areas. In recent years, aerodynamics have become an area of increasing focus by racing teams as well as car manufacturers. Advanced tools such as [[wind tunnels]] and [[computational fluid dynamics]] (CFD) have allowed engineers to optimize the handling characteristics of vehicles. Advanced wind tunnels such as [[Wind Shear's Full Scale, Rolling Road, Automotive Wind Tunnel]] recently built in Concord, North Carolina have taken the simulation of on-road conditions to the ultimate level of accuracy and repeatability under very controlled conditions. CFD has similarly been used as a tool to simulate aerodynamic conditions but through the use of extremely advanced computers and software to duplicate the car's design digitally then "test" that design on the computer.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)