Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Asymptotic analysis === Arguably the most important application of the Bernoulli numbers in mathematics is their use in the [[Euler–Maclaurin formula]]. Assuming that {{mvar|f}} is a sufficiently often differentiable function the Euler–Maclaurin formula can be written as{{sfnp|Graham|Knuth|Patashnik|1989|loc=9.67}} : <math>\sum_{k=a}^{b-1} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^-_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_-(f,m).</math> This formulation assumes the convention {{math|1=''B''{{su|p=−|b=1}} = −{{sfrac|1|2}}}}. Using the convention {{math|1=''B''{{su|p=+|b=1}} = +{{sfrac|1|2}}}} the formula becomes : <math>\sum_{k=a+1}^{b} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^+_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_+(f,m).</math> Here <math>f^{(0)}=f</math> (i.e. the zeroth-order derivative of <math>f</math> is just <math>f</math>). Moreover, let <math>f^{(-1)}</math> denote an [[antiderivative]] of <math>f</math>. By the [[fundamental theorem of calculus]], : <math>\int_a^b f(x)\,dx = f^{(-1)}(b) - f^{(-1)}(a).</math> Thus the last formula can be further simplified to the following succinct form of the Euler–Maclaurin formula : <math> \sum_{k=a+1}^{b} f(k)= \sum_{k=0}^m \frac{B_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m). </math> This form is for example the source for the important Euler–Maclaurin expansion of the zeta function : <math> \begin{align} \zeta(s) & =\sum_{k=0}^m \frac{B^+_k}{k!} s^{\overline{k-1}} + R(s,m) \\ & = \frac{B_0}{0!}s^{\overline{-1}} + \frac{B^+_1}{1!} s^{\overline{0}} + \frac{B_2}{2!} s^{\overline{1}} +\cdots+R(s,m) \\ & = \frac{1}{s-1} + \frac{1}{2} + \frac{1}{12}s + \cdots + R(s,m). \end{align} </math> Here {{math|''s''<sup>{{overline|''k''}}</sup>}} denotes the [[Pochhammer symbol|rising factorial power]].{{sfnp|Graham|Knuth|Patashnik|1989|loc=2.44, 2.52}} Bernoulli numbers are also frequently used in other kinds of [[asymptotic expansion]]s. The following example is the classical Poincaré-type asymptotic expansion of the [[digamma function]] {{math|''ψ''}}. :<math>\psi(z) \sim \ln z - \sum_{k=1}^\infty \frac{B^+_k}{k z^k} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)