Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binary relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Homogeneous relation == {{main|Homogeneous relation}} A '''homogeneous relation'''<!---keep boldface: [[Homogeneous relation]] redirects to here---> over a set <math>X</math> is a binary relation over <math>X</math> and itself, i.e. it is a subset of the Cartesian product <math>X \times X.</math><ref name="Winter2007"/><ref name="Müller2012">{{cite book|author=M. E. Müller|title=Relational Knowledge Discovery|year=2012|publisher=Cambridge University Press|isbn=978-0-521-19021-3|page=22}}</ref><ref name="PahlDamrath2001-p496">{{cite book|author1=Peter J. Pahl|author2=Rudolf Damrath|title=Mathematical Foundations of Computational Engineering: A Handbook|year=2001|publisher=Springer Science & Business Media|isbn=978-3-540-67995-0|page=496}}</ref> It is also simply called a (binary) relation over <math>X</math>. A homogeneous relation <math>R</math> over a set <math>X</math> may be identified with a [[Graph theory#Directed graph|directed simple graph permitting loops]], where <math>X</math> is the vertex set and <math>R</math> is the edge set (there is an edge from a vertex <math>x</math> to a vertex <math>y</math> if and only if <math>xRy</math>). The set of all homogeneous relations <math>\mathcal{B}(X)</math> over a set <math>X</math> is the [[power set]] <math>2^{X \times X}</math> which is a [[Boolean algebra (structure)|Boolean algebra]] augmented with the [[Involution (mathematics)|involution]] of mapping of a relation to its [[converse relation]]. Considering [[composition of relations]] as a [[binary operation]] on <math>\mathcal{B}(X)</math>, it forms a [[semigroup with involution]]. Some important properties that a homogeneous relation <math>R</math> over a set <math>X</math> may have are: * {{em|[[Reflexive relation|Reflexive]]}}: for all <math>x \in X,</math> <math>xRx</math>. For example, <math>\geq</math> is a reflexive relation but > is not. * {{em|[[Irreflexive relation|Irreflexive]]}}: for all <math>x \in X,</math> not <math>xRx</math>. For example, <math>></math> is an irreflexive relation, but <math>\geq</math> is not. * {{em|[[Symmetric relation|Symmetric]]}}: for all <math>x, y \in X,</math> if <math>xRy</math> then <math>yRx</math>. For example, "is a blood relative of" is a symmetric relation. * {{em|[[Antisymmetric relation|Antisymmetric]]}}: for all <math>x, y \in X,</math> if <math>xRy</math> and <math>yRx</math> then <math>x = y.</math> For example, <math>\geq</math> is an antisymmetric relation.<ref>{{citation|first1=Douglas|last1=Smith|first2=Maurice|last2=Eggen|first3=Richard|last3=St. Andre|title=A Transition to Advanced Mathematics|edition=6th|publisher=Brooks/Cole|year=2006|isbn=0-534-39900-2|page=160}}</ref> * {{em|[[Asymmetric relation|Asymmetric]]}}: for all <math>x, y \in X,</math> if <math>xRy</math> then not <math>yRx</math>. A relation is asymmetric if and only if it is both antisymmetric and irreflexive.<ref>{{citation|first1=Yves|last1=Nievergelt|title=Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography|publisher=Springer-Verlag|year=2002|page=[https://books.google.com/books?id=_H_nJdagqL8C&pg=PA158 158]}}.</ref> For example, > is an asymmetric relation, but <math>\geq</math> is not. * {{em|[[Transitive relation|Transitive]]}}: for all <math>x, y, z \in X,</math> if <math>xRy</math> and <math>yRz</math> then <math>xRz</math>. A transitive relation is irreflexive if and only if it is asymmetric.<ref>{{cite book|last1=Flaška|first1=V.|last2=Ježek|first2=J.|last3=Kepka|first3=T.|last4=Kortelainen|first4=J.|title=Transitive Closures of Binary Relations I|year=2007|publisher=School of Mathematics – Physics Charles University|location=Prague|page=1|url=http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|url-status=dead|archive-url=https://web.archive.org/web/20131102214049/http://www.karlin.mff.cuni.cz/~jezek/120/transitive1.pdf|archive-date=2013-11-02}} Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</ref> For example, "is ancestor of" is a transitive relation, while "is parent of" is not. * {{em|[[Connected relation|Connected]]}}: for all <math>x, y \in X,</math> if <math>x \neq y</math> then <math>xRy</math> or <math>yRx</math>. * {{em|[[Connected relation|Strongly connected]]}}: for all <math>x, y \in X,</math> <math>xRy</math> or <math>yRx</math>. * {{em|[[Dense order#Generalizations|Dense]]}}: for all <math>x, y \in X,</math> if <math>xRy ,</math> then some <math>z \in X</math> exists such that <math>xRz</math> and <math>zRy</math>. A {{em|[[Partially ordered set#Formal definition|partial order]]}} is a relation that is reflexive, antisymmetric, and transitive. A {{em|[[Partially ordered set#Correspondence of strict and non-strict partial order relations|strict partial order]]}} is a relation that is irreflexive, asymmetric, and transitive. A {{em|[[total order]]}} is a relation that is reflexive, antisymmetric, transitive and connected.<ref>Joseph G. Rosenstein, ''Linear orderings'', Academic Press, 1982, {{ISBN|0-12-597680-1}}, p. 4</ref> A {{em|[[Total order#Strict total order|strict total order]]}} is a relation that is irreflexive, asymmetric, transitive and connected. An {{em|[[equivalence relation]]}} is a relation that is reflexive, symmetric, and transitive. For example, "<math>x</math> divides <math>y</math>" is a partial, but not a total order on [[natural numbers]] <math>\N,</math> "<math>x < y</math>" is a strict total order on <math>\N,</math> and "<math>x</math> is parallel to <math>y</math>" is an equivalence relation on the set of all lines in the [[Euclidean plane]]. All operations defined in section {{slink||Operations}} also apply to homogeneous relations. Beyond that, a homogeneous relation over a set <math>X</math> may be subjected to closure operations like: ; {{em|[[Reflexive closure]]}}: the smallest reflexive relation over <math>X</math> containing <math>R</math>, ; {{em|[[Transitive closure]]}}: the smallest transitive relation over <math>X</math> containing <math>R</math>, ; {{em|[[Equivalence closure]]}}: the smallest [[equivalence relation]] over <math>X</math> containing <math>R</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)