Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Further generalizations === The generalized binomial theorem can be extended to the case where {{mvar|x}} and {{mvar|y}} are complex numbers. For this version, one should again assume {{math|{{abs|''x''}} > {{abs|''y''}}}}<ref name=convergence group=Note /> and define the powers of {{math|1=''x'' + ''y''}} and {{mvar|x}} using a [[Holomorphic function|holomorphic]] [[complex logarithm|branch of log]] defined on an open disk of radius {{math|{{abs|''x''}}}} centered at {{mvar|x}}. The generalized binomial theorem is valid also for elements {{mvar|x}} and {{mvar|y}} of a [[Banach algebra]] as long as {{math|1=''xy'' = ''yx''}}, and {{mvar|x}} is invertible, and {{math|{{norm|''y''/''x''}} < 1}}. A version of the binomial theorem is valid for the following [[Pochhammer symbol]]-like family of polynomials: for a given real constant {{mvar|c}}, define <math> x^{(0)} = 1 </math> and <math display="block"> x^{(n)} = \prod_{k=1}^{n}[x+(k-1)c]</math> for <math> n > 0.</math> Then<ref name="Sokolowsky">{{cite journal| url=https://cms.math.ca/publications/crux/issue/?volume=5&issue=2| title=Problem 352|first1=Dan|last1=Sokolowsky|first2=Basil C.|last2=Rennie|journal=Crux Mathematicorum|volume=5|issue=2|date=1979 | pages=55β56}}</ref> <math display="block"> (a + b)^{(n)} = \sum_{k=0}^{n}\binom{n}{k}a^{(n-k)}b^{(k)}.</math> The case {{math|1=''c'' = 0}} recovers the usual binomial theorem. More generally, a sequence <math>\{p_n\}_{n=0}^\infty</math> of polynomials is said to be '''of binomial type''' if * <math> \deg p_n = n </math> for all <math>n</math>, * <math> p_0(0) = 1 </math>, and * <math> p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) p_{n-k}(y) </math> for all <math>x</math>, <math>y</math>, and <math>n</math>. An operator <math>Q</math> on the space of polynomials is said to be the ''basis operator'' of the sequence <math>\{p_n\}_{n=0}^\infty</math> if <math>Qp_0 = 0</math> and <math> Q p_n = n p_{n-1} </math> for all <math> n \geqslant 1 </math>. A sequence <math>\{p_n\}_{n=0}^\infty</math> is binomial if and only if its basis operator is a [[Delta operator]].<ref>{{cite book |last=Aigner |first=Martin |author-link=Martin Aigner |title=Combinatorial Theory |url=https://archive.org/details/combinatorialthe0000aign |url-access=limited |date=1979 |publisher=Springer |isbn=0-387-90376-3 |page=105 }}</ref> Writing <math> E^a </math> for the shift by <math> a </math> operator, the Delta operators corresponding to the above "Pochhammer" families of polynomials are the backward difference <math> I - E^{-c} </math> for <math> c>0 </math>, the ordinary derivative for <math> c=0 </math>, and the forward difference <math> E^{-c} - I </math> for <math> c<0 </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)