Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Block matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Special types of block matrices== ===Direct sums and block diagonal matrices=== ====Direct sum==== {{See also|Matrix addition#Direct sum}} For any arbitrary matrices '''A''' (of size ''m'' Γ ''n'') and '''B''' (of size ''p'' Γ ''q''), we have the '''direct sum''' of '''A''' and '''B''', denoted by '''A''' <math>\oplus</math> '''B''' and defined as :<math> {A} \oplus {B} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & b_{p1} & \cdots & b_{pq} \end{bmatrix}. </math><ref name=":1" /> For instance, :<math> \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}. </math> This operation generalizes naturally to arbitrary dimensioned arrays (provided that '''A''' and '''B''' have the same number of dimensions). Note that any element in the [[direct sum of vector spaces|direct sum]] of two [[vector space]]s of matrices could be represented as a direct sum of two matrices. ====Block diagonal matrices {{anchor|Block diagonal matrix}} ==== {{See also|Diagonal matrix}} A '''block diagonal matrix''' is a block matrix that is a [[square matrix]] such that the main-diagonal blocks are square matrices and all off-diagonal blocks are zero matrices.<ref name=":0">{{Cite book |last1=Abadir |first1=Karim M. |title=Matrix Algebra |last2=Magnus |first2=Jan R. |publisher=Cambridge University Press |year=2005 |isbn=9781139443647 |pages=97,100,106,111,114,118 |language=en}}</ref> That is, a block diagonal matrix '''A''' has the form :<math>{A} = \begin{bmatrix} {A}_1 & {0} & \cdots & {0} \\ {0} & {A}_2 & \cdots & {0} \\ \vdots & \vdots & \ddots & \vdots \\ {0} & {0} & \cdots & {A}_n \end{bmatrix}</math> where '''A'''<sub>''k''</sub> is a square matrix for all ''k'' = 1, ..., ''n''. In other words, matrix '''A''' is the [[direct sum of matrices|direct sum]] of '''A'''<sub>1</sub>, ..., '''A'''<sub>''n''</sub>.<ref name=":0" /> It can also be indicated as '''A'''<sub>1</sub> β '''A'''<sub>2</sub> β ... β '''A'''<sub>''n''</sub><ref name=":1" /> or diag('''A'''<sub>1</sub>, '''A'''<sub>2</sub>, ..., '''A'''<sub>''n''</sub>)<ref name=":1">{{Cite book |last=Gentle |first=James E. |title=Matrix Algebra: Theory, Computations, and Applications in Statistics |date=2007 |publisher=Springer New York Springer e-books |isbn=978-0-387-70873-7 |series=Springer Texts in Statistics |location=New York, NY |pages=47,487}}</ref> (the latter being the same formalism used for a [[diagonal matrix]]). Any square matrix can trivially be considered a block diagonal matrix with only one block. For the [[determinant]] and [[trace (linear algebra)|trace]], the following properties hold: :<math>\begin{align} \det{A} &= \det{A}_1 \times \cdots \times \det{A}_n, \end{align}</math><ref>{{Cite book |last1=Quarteroni |first1=Alfio |title=Numerical mathematics |last2=Sacco |first2=Riccardo |last3=Saleri |first3=Fausto |date=2000 |publisher=Springer |isbn=978-0-387-98959-4 |series=Texts in applied mathematics |location=New York |pages=10,13}}</ref><ref name=":6">{{Cite journal |last1=George |first1=Raju K. |last2=Ajayakumar |first2=Abhijith |date=2024 |title=A Course in Linear Algebra |url=https://doi.org/10.1007/978-981-99-8680-4 |journal=University Texts in the Mathematical Sciences |language=en |pages=35,407 |doi=10.1007/978-981-99-8680-4 |isbn=978-981-99-8679-8 |issn=2731-9318|url-access=subscription }}</ref> and :<math>\begin{align} \operatorname{tr}{A} &= \operatorname{tr} {A}_1 + \cdots + \operatorname{tr} {A}_n.\end{align}</math><ref name=":0" /><ref name=":6" /> A block diagonal matrix is invertible [[if and only if]] each of its main-diagonal blocks are invertible, and in this case its inverse is another block diagonal matrix given by :<math>\begin{bmatrix} {A}_{1} & {0} & \cdots & {0} \\ {0} & {A}_{2} & \cdots & {0} \\ \vdots & \vdots & \ddots & \vdots \\ {0} & {0} & \cdots & {A}_{n} \end{bmatrix}^{-1} = \begin{bmatrix} {A}_{1}^{-1} & {0} & \cdots & {0} \\ {0} & {A}_{2}^{-1} & \cdots & {0} \\ \vdots & \vdots & \ddots & \vdots \\ {0} & {0} & \cdots & {A}_{n}^{-1} \end{bmatrix}. </math><ref>{{Cite book |last=Prince |first=Simon J. D. |title=Computer vision: models, learning, and inference |date=2012 |publisher=Cambridge university press |isbn=978-1-107-01179-3 |location=New York |pages=531}}</ref> The [[eigenvalues and eigenvectors|eigenvalues]]<ref name=":5" /> [[eigenvalues and eigenvectors|and eigenvectors]] of <math>{A}</math> are simply those of the <math>{A}_k</math>s combined.<ref name=":6" /> ===Block tridiagonal matrices=== {{See also|Tridiagonal matrix}} A '''block tridiagonal matrix''' is another special block matrix, which is just like the block diagonal matrix a [[square matrix]], having square matrices (blocks) in the lower diagonal, [[main diagonal]] and upper diagonal, with all other blocks being zero matrices. It is essentially a [[tridiagonal matrix]] but has submatrices in places of scalars. A block tridiagonal matrix <math>A</math> has the form :<math>{A} = \begin{bmatrix} {B}_{1} & {C}_{1} & & & \cdots & & {0} \\ {A}_{2} & {B}_{2} & {C}_{2} & & & & \\ & \ddots & \ddots & \ddots & & & \vdots \\ & & {A}_{k} & {B}_{k} & {C}_{k} & & \\ \vdots & & & \ddots & \ddots & \ddots & \\ & & & & {A}_{n-1} & {B}_{n-1} & {C}_{n-1} \\ {0} & & \cdots & & & {A}_{n} & {B}_{n} \end{bmatrix}</math> where <math>{A}_{k}</math>, <math>{B}_{k}</math> and <math>{C}_{k}</math> are square sub-matrices of the lower, main and upper diagonal respectively.<ref>{{Cite book |last=Dietl |first=Guido K. E. |url=https://www.worldcat.org/title/ocm85898525 |title=Linear estimation and detection in Krylov subspaces |date=2007 |publisher=Springer |isbn=978-3-540-68478-7 |series=Foundations in signal processing, communications and networking |location=Berlin ; New York |pages=85,87 |language=en |oclc=ocm85898525}}</ref><ref>{{Cite book |last1=Horn |first1=Roger A. |title=Matrix analysis |last2=Johnson |first2=Charles R. |date=2017 |publisher=Cambridge University Press |isbn=978-0-521-83940-2 |edition=Second edition, corrected reprint |location=New York, NY |pages=36 |language=en}}</ref> Block tridiagonal matrices are often encountered in numerical solutions of engineering problems (e.g., [[computational fluid dynamics]]). Optimized numerical methods for [[LU factorization]] are available<ref>{{Cite book |last=Datta |first=Biswa Nath |title=Numerical linear algebra and applications |date=2010 |publisher=SIAM |isbn=978-0-89871-685-6 |edition=2 |location=Philadelphia, Pa |pages=168}}</ref> and hence efficient solution algorithms for equation systems with a block tridiagonal matrix as coefficient matrix. The [[Thomas algorithm]], used for efficient solution of equation systems involving a [[tridiagonal matrix]] can also be applied using matrix operations to block tridiagonal matrices (see also [[Block LU decomposition]]). ===Block triangular matrices=== {{See also|Triangular matrix}} ====Upper block triangular==== A matrix <math>A</math> is '''upper block triangular''' (or '''block upper triangular'''<ref name=":7">{{Cite book |last=Stewart |first=Gilbert W. |title=Matrix algorithms. 2: Eigensystems |date=2001 |publisher=Soc. for Industrial and Applied Mathematics |isbn=978-0-89871-503-3 |location=Philadelphia, Pa |pages=5}}</ref>) if :<math>A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ 0 & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{kk} \end{bmatrix}</math>, where <math>A_{ij} \in \mathbb{F}^{n_i \times n_j}</math> for all <math>i, j = 1, \ldots, k</math>.<ref name=":5">{{Cite book |last=Bernstein |first=Dennis S. |title=Matrix mathematics: theory, facts, and formulas |publisher=Princeton University Press |year=2009 |isbn=978-0-691-14039-1 |edition=2 |location=Princeton, NJ |pages=168,298 |language=en}}</ref><ref name=":7" /> ====Lower block triangular==== A matrix <math>A</math> is '''lower block triangular''' if :<math>A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{bmatrix}</math>, where <math>A_{ij} \in \mathbb{F}^{n_i \times n_j}</math> for all <math>i, j = 1, \ldots, k</math>.<ref name=":5" /> ===Block Toeplitz matrices=== {{See also|Toeplitz matrix}} A '''block Toeplitz matrix''' is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a [[Toeplitz matrix]] has elements repeated down the diagonal. A matrix <math>A</math> is '''block Toeplitz''' if <math>A_{(i,j)} = A_{(k,l)}</math> for all <math>k - i = l - j</math>, that is, :<math>A = \begin{bmatrix} A_1 & A_2 & A_3 & \cdots \\ A_4 & A_1 & A_2 & \cdots \\ A_5 & A_4 & A_1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}</math>, where <math>A_i \in \mathbb{F}^{n_i \times m_i}</math>.<ref name=":5" /> ===Block Hankel matrices=== {{See also|Hankel matrix}} A matrix <math>A</math> is '''block Hankel''' if <math>A_{(i,j)} = A_{(k,l)}</math> for all <math>i + j = k + l</math>, that is, :<math>A = \begin{bmatrix} A_1 & A_2 & A_3 & \cdots \\ A_2 & A_3 & A_4 & \cdots \\ A_3 & A_4 & A_5 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}</math>, where <math>A_i \in \mathbb{F}^{n_i \times m_i}</math>.<ref name=":5" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)