Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brouwer fixed-point theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Before discovery=== [[File:Théorème-de-Brouwer-(cond-1).jpg|thumb|right|For flows in an unbounded area, or in an area with a "hole", the theorem is not applicable.]] [[File:Théorème-de-Brouwer-(cond-2).jpg|thumb|left|The theorem applies to any disk-shaped area, where it guarantees the existence of a fixed point.]] At the end of the 19th century, the old problem<ref>See F. Brechenmacher ''[https://arxiv.org/abs/0704.2931 L'identité algébrique d'une pratique portée par la discussion sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des planètes]'' CNRS Fédération de Recherche Mathématique du Nord-Pas-de-Calais</ref> of the [[stability of the solar system]] returned into the focus of the mathematical community.<ref>[[Henri Poincaré]] won the [[Oscar II, King of Sweden|King of Sweden]]'s mathematical competition in 1889 for his work on the related [[three-body problem]]: [[Jacques Tits]] ''[http://www.culture.gouv.fr/culture/actualites/celebrations2004/poincare.htm Célébrations nationales 2004]'' Site du Ministère Culture et Communication</ref> Its solution required new methods. As noted by [[Henri Poincaré]], who worked on the [[three-body problem]], there is no hope to find an exact solution: "Nothing is more proper to give us an idea of the hardness of the three-body problem, and generally of all problems of Dynamics where there is no uniform integral and the Bohlin series diverge."<ref name=methodes>[[Henri Poincaré]] ''Les méthodes nouvelles de la mécanique céleste'' T Gauthier-Villars, Vol 3 p 389 (1892) new edition Paris: Blanchard, 1987.</ref> He also noted that the search for an approximate solution is no more efficient: "the more we seek to obtain precise approximations, the more the result will diverge towards an increasing imprecision".<ref>Quotation from [[Henri Poincaré]] taken from: P. A. Miquel ''[http://www.arches.ro/revue/no03/no3art03.htm La catégorie de désordre] {{Webarchive|url=https://web.archive.org/web/20160303205947/http://www.arches.ro/revue/no03/no3art03.htm# |date=2016-03-03 }}'', on the website of l'Association roumaine des chercheurs francophones en sciences humaines</ref> He studied a question analogous to that of the surface movement in a cup of coffee. What can we say, in general, about the trajectories on a surface animated by a constant [[flow (mathematics)|flow]]?<ref>This question was studied in: {{cite journal |first=H. |last=Poincaré |title=Sur les courbes définies par les équations différentielles |journal=[[Journal de Mathématiques Pures et Appliquées]] |volume=2 |issue=4 |pages=167–244 |year=1886 }}</ref> Poincaré discovered that the answer can be found in what we now call the [[topology|topological]] properties in the area containing the trajectory. If this area is [[compact space|compact]], i.e. both [[closed set|closed]] and [[bounded set|bounded]], then the trajectory either becomes stationary, or it approaches a [[limit cycle]].<ref>This follows from the [[Poincaré–Bendixson theorem]].</ref> Poincaré went further; if the area is of the same kind as a disk, as is the case for the cup of coffee, there must necessarily be a fixed point. This fixed point is invariant under all functions which associate to each point of the original surface its position after a short time interval ''t''. If the area is a circular band, or if it is not closed,<ref>Multiplication by {{sfrac|1|2}} on ]0, 1[<sup>2</sup> has no fixed point.</ref> then this is not necessarily the case. To understand differential equations better, a new branch of mathematics was born. Poincaré called it ''analysis situs''. The French [[Encyclopædia Universalis]] defines it as the branch which "treats the properties of an object that are invariant if it is deformed in any continuous way, without tearing".<ref>"concerne les propriétés invariantes d'une figure lorsqu'on la déforme de manière continue quelconque, sans déchirure (par exemple, dans le cas de la déformation de la sphère, les propriétés corrélatives des objets tracés sur sa surface". From C. Houzel M. Paty ''[http://www.scientiaestudia.org.br/associac/paty/pdf/Paty,M_1997g-PoincareEU.pdf Poincaré, Henri (1854–1912)] {{webarchive|url=https://web.archive.org/web/20101008232932/http://www.scientiaestudia.org.br/associac/paty/pdf/Paty%2CM_1997g-PoincareEU.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.scientiaestudia.org.br/associac/paty/pdf/Paty%2CM_1997g-PoincareEU.pdf |archive-date=2022-10-09 |url-status=live |date=2010-10-08 }}'' Encyclopædia Universalis Albin Michel, Paris, 1999, p. 696–706</ref> In 1886, Poincaré proved a result that is equivalent to Brouwer's fixed-point theorem,<ref>Poincaré's theorem is stated in: V. I. Istratescu ''Fixed Point Theory an Introduction'' Kluwer Academic Publishers (réédition de 2001) p 113 {{isbn|1-4020-0301-3}}</ref> although the connection with the subject of this article was not yet apparent.<ref>{{SpringerEOM|title=Brouwer theorem |first=M.I. |last=Voitsekhovskii |isbn=1-4020-0609-8}}</ref> A little later, he developed one of the fundamental tools for better understanding the analysis situs, now known as the [[fundamental group]] or sometimes the Poincaré group.<ref>{{cite book |first=Jean |last=Dieudonné |author-link=Jean Dieudonné |title=A History of Algebraic and Differential Topology, 1900–1960 |location=Boston |publisher=Birkhäuser |year=1989 |isbn=978-0-8176-3388-2 |pages=[https://archive.org/details/historyofalgebra0000dieu_g9a3/page/17 17–24] |url=https://archive.org/details/historyofalgebra0000dieu_g9a3/page/17 }}</ref> This method can be used for a very compact proof of the theorem under discussion.<!-- fr.wikipedia has it in its article on the fundamental group, we don't --> Poincaré's method was analogous to that of [[Charles Émile Picard|Émile Picard]], a contemporary mathematician who generalized the [[Cauchy–Lipschitz theorem]].<ref>See for example: [[Charles Émile Picard|Émile Picard]] ''[http://portail.mathdoc.fr/JMPA/PDF/JMPA_1893_4_9_A4_0.pdf Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires] {{Webarchive|url=https://web.archive.org/web/20110716055143/http://portail.mathdoc.fr/JMPA/PDF/JMPA_1893_4_9_A4_0.pdf# |archive-url=https://web.archive.org/web/20110716055143/http://portail.mathdoc.fr/JMPA/PDF/JMPA_1893_4_9_A4_0.pdf |archive-date=2011-07-16 |url-status=live |date=2011-07-16 }}'' Journal de Mathématiques p 217 (1893)</ref> Picard's approach is based on a result that would later be formalised by [[Banach fixed-point theorem|another fixed-point theorem]], named after [[Stefan Banach|Banach]]. Instead of the topological properties of the domain, this theorem uses the fact that the function in question is a [[contraction mapping|contraction]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)