Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cabibbo–Kobayashi–Maskawa matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Wolfenstein parameters=== A third parameterization of the CKM matrix was introduced by [[Lincoln Wolfenstein]] with the four real parameters {{mvar|λ}}, {{mvar|A}}, {{mvar|ρ}}, and {{mvar|η}}, which would all 'vanish' (would be zero) if there were no coupling.<ref> {{cite journal |first=L. |last=Wolfenstein |author-link=Lincoln Wolfenstein |year=1983 |title=Parametrization of the Kobayashi-Maskawa Matrix |journal=[[Physical Review Letters]] |volume=51 |pages=1945–1947 |issue=21 |doi=10.1103/PhysRevLett.51.1945 |bibcode=1983PhRvL..51.1945W }} </ref> The four Wolfenstein parameters have the property that all are of order 1 and are related to the 'standard' parameterization: :{| |- | <math> \lambda = s_{12} ~, </math> | <math> \lambda = s_{12} ~,</math> |- | <math> A \lambda^2 = s_{23} ~, </math> | <math> A = \frac{s_{23} }{\; s_{12}^2 \;} ~,</math> |- | <math> A \lambda^3 ( \rho - i \eta ) = s_{13} e^{-i\delta} ~, \quad </math> | <math> \rho = \operatorname\mathcal{R_e} \left\{ \frac{\; s_{13} \, e^{-i\delta} \;}{ s_{12} \, s_{23} } \right\} ~, \quad \eta = - \operatorname\mathcal{I_m} \left\{ \frac{\; s_{13} \, e^{-i\delta} \;}{ s_{12} \, s_{23} } \right\} ~. </math> |} Although the Wolfenstein parameterization of the CKM matrix can be as exact as desired when carried to high order, it is mainly used for generating convenient approximations to the standard parameterization. The approximation to order {{mvar|λ}}{{sup|3}}, good to better than 0.3% accuracy, is: ::<math>\begin{bmatrix} 1 - \tfrac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\tfrac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4) ~. </math> Rates of [[CP violation]] correspond to the parameters {{mvar|ρ}} and {{mvar|η}}. Using the values of the previous section for the CKM matrix, as of 2008 the best determination of the Wolfenstein parameter values is:<ref name="PDG2023">{{cite journal |last1=R.L. Workman et al. (Particle Data Group) |title=Review of Particle Physics (and 2023 update) |journal=Progress of Theoretical and Experimental Physics |date=August 2022 |volume=2022 |issue=8 |pages=083C01 |doi=10.1093/ptep/ptac097 |url=https://pdg.lbl.gov/ |access-date=12 September 2023 |ref=PDG2023|doi-access=free |hdl=20.500.11850/571164 |hdl-access=free }}</ref> :{{mvar|λ}} =.22500 ± 0.0067, {{mvar|A}} = {{val|0.826|+0.018|-0.015}}, {{mvar|ρ}} = 0.159±0.010, and {{mvar|η}} = 0.348±0.010.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)