Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Channel capacity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Main results on feedback capacity === Let <math>X</math> and <math>Y</math> be modeled as random variables. The [[causal conditioning]] <math>P(y^n||x^n) \triangleq \prod_{i=1}^n P(y_i|y^{i-1},x^{i})</math> describes the given channel. The choice of the [[causally conditional distribution]] <math>P(x^n||y^{n-1}) \triangleq \prod_{i=1}^n P(x_i|x^{i-1},y^{i-1})</math> determines the [[Joint probability distribution|joint distribution]] <math>p_{X^n,Y^n}(x^n,y^n)</math> due to the chain rule for causal conditioning<ref name="2008.2009849">{{cite journal |last1=Permuter |first1=Haim Henry |last2=Weissman |first2=Tsachy |last3=Goldsmith |first3=Andrea J. |date=February 2009 |title=Finite State Channels With Time-Invariant Deterministic Feedback |journal=IEEE Transactions on Information Theory |volume=55 |issue=2 |pages=644β662 |arxiv=cs/0608070 |doi=10.1109/TIT.2008.2009849 |s2cid=13178}}</ref> <math>P(y^n, x^n) = P(y^n||x^n) P(x^n||y^{n-1})</math> which, in turn, induces a [[directed information]] <math>I(X^N \rightarrow Y^N)=\mathbf E\left[ \log \frac{P(Y^N||X^N)}{P(Y^N)} \right]</math>. The '''feedback capacity''' is given by : <math>\ C_{\text{feedback}} = \lim_{n \to \infty} \frac{1}{n} \sup_{P_{X^n||Y^{n-1}}} I(X^n \to Y^n)\, </math>, where the [[Infimum and supremum|supremum]] is taken over all possible choices of <math>P_{X^n||Y^{n-1}}(x^n||y^{n-1})</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)