Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chernoff bound
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs== ===Multiplicative form=== Following the conditions of the multiplicative Chernoff bound, let {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} be independent [[Bernoulli random variable]]s, whose sum is {{math|''X''}}, each having probability ''p<sub>i</sub>'' of being equal to 1. For a Bernoulli variable: :<math>\operatorname E \left[e^{t\cdot X_i} \right] = (1 - p_i) e^0 + p_i e^t = 1 + p_i (e^t -1) \leq e^{p_i (e^t - 1)}</math> So, using ({{EquationNote|1}}) with <math>a = (1+\delta)\mu</math> for any <math>\delta>0</math> and where <math>\mu = \operatorname E[X] = \textstyle\sum_{i=1}^n p_i</math>, :<math>\begin{align} \Pr (X > (1 + \delta)\mu) &\le \inf_{t \geq 0} \exp(-t(1+\delta)\mu)\prod_{i=1}^n\operatorname{E}[\exp(tX_i)]\\[4pt] & \leq \inf_{t \geq 0} \exp\Big(-t(1+\delta)\mu + \sum_{i=1}^n p_i(e^t - 1)\Big) \\[4pt] & = \inf_{t \geq 0} \exp\Big(-t(1+\delta)\mu + (e^t - 1)\mu\Big). \end{align}</math> If we simply set {{math|''t'' {{=}} log(1 + ''δ'')}} so that {{math|''t'' > 0}} for {{math|''δ'' > 0}}, we can substitute and find :<math>\exp\Big(-t(1+\delta)\mu + (e^t - 1)\mu\Big) = \frac{\exp((1+\delta - 1)\mu)}{(1+\delta)^{(1+\delta)\mu}} = \left[\frac{e^\delta}{(1+\delta)^{(1+\delta)}}\right]^\mu.</math> This proves the result desired. ===Chernoff–Hoeffding theorem (additive form)=== Let {{math|''q'' {{=}} ''p'' + ''ε''}}. Taking {{math|''a'' {{=}} ''nq''}} in ({{EquationNote|1}}), we obtain: :<math>\Pr\left ( \frac{1}{n} \sum X_i \ge q\right )\le \inf_{t>0} \frac{E \left[\prod e^{t X_i}\right]}{e^{tnq}} = \inf_{t>0} \left ( \frac{ E\left[e^{tX_i} \right] }{e^{tq}}\right )^n.</math> Now, knowing that {{math|Pr(''X<sub>i</sub>'' {{=}} 1) {{=}} ''p'', Pr(''X<sub>i</sub>'' {{=}} 0) {{=}} 1 − ''p''}}, we have :<math>\left (\frac{\operatorname E\left[e^{tX_i} \right] }{e^{tq}}\right )^n = \left (\frac{p e^t + (1-p)}{e^{tq} }\right )^n = \left ( pe^{(1-q)t} + (1-p)e^{-qt} \right )^n.</math> Therefore, we can easily compute the infimum, using calculus: :<math>\frac{d}{dt} \left (pe^{(1-q)t} + (1-p)e^{-qt} \right) = (1-q)pe^{(1-q)t}-q(1-p)e^{-qt}</math> Setting the equation to zero and solving, we have :<math>\begin{align} (1-q)pe^{(1-q)t} &= q(1-p)e^{-qt} \\ (1-q)pe^{t} &= q(1-p) \end{align}</math> so that :<math>e^t = \frac{(1-p)q}{(1-q)p}.</math> Thus, :<math>t = \log\left(\frac{(1-p)q}{(1-q)p}\right).</math> As {{math|''q'' {{=}} ''p'' + ''ε'' > ''p''}}, we see that {{math|''t'' > 0}}, so our bound is satisfied on {{mvar|t}}. Having solved for {{mvar|t}}, we can plug back into the equations above to find that :<math>\begin{align} \log \left (pe^{(1-q)t} + (1-p)e^{-qt} \right ) &= \log \left ( e^{-qt}(1-p+pe^t) \right ) \\ &= \log\left (e^{-q \log\left(\frac{(1-p)q}{(1-q)p}\right)}\right) + \log\left(1-p+pe^{\log\left(\frac{1-p}{1-q}\right)}e^{\log\frac{q}{p}}\right ) \\ &= -q\log\frac{1-p}{1-q} -q \log\frac{q}{p} + \log\left(1-p+ p\left(\frac{1-p}{1-q}\right)\frac{q}{p}\right) \\ &= -q\log\frac{1-p}{1-q} -q \log\frac{q}{p} + \log\left(\frac{(1-p)(1-q)}{1-q}+\frac{(1-p)q}{1-q}\right) \\ &= -q \log\frac{q}{p} + \left ( -q\log\frac{1-p}{1-q} + \log\frac{1-p}{1-q} \right ) \\ &= -q\log\frac{q}{p} + (1-q)\log\frac{1-p}{1-q} \\ &= -D(q \parallel p). \end{align}</math> We now have our desired result, that :<math>\Pr \left (\tfrac{1}{n}\sum X_i \ge p + \varepsilon\right ) \le e^{-D(p+\varepsilon\parallel p) n}.</math> To complete the proof for the symmetric case, we simply define the random variable {{math|''Y<sub>i</sub>'' {{=}} 1 − ''X<sub>i</sub>''}}, apply the same proof, and plug it into our bound.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)