Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Circular polarization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical description== The [[Classical physics|classical]] [[Sine wave|sinusoidal]] plane wave solution of the [[electromagnetic wave equation]] for the [[Electric field|electric]] and [[Magnetic field|magnetic]] fields is: :<math>\begin{align} \mathbf{E} ( \mathbf{r}, t ) &= \left| \,\mathbf{E}\, \right| \mathrm{Re} \left\{ \mathbf{Q} \left|\psi\right\rangle \exp \left[ i \left( kz - \omega t \right) \right] \right\} \\ \mathbf{B} ( \mathbf{r}, t ) &= \dfrac{1}{c} \hat{ \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t ) \end{align}</math> where k is the [[wavenumber]]; :<math> \omega = c k</math> is the [[angular frequency]] of the wave; <math> \mathbf{Q} = \left [ \hat{ \mathbf{x}}, \hat{\mathbf{y}} \right ] </math> is an orthogonal <math> 2 \times 2</math> matrix whose columns span the transverse x-y plane; and <math> c </math> is the [[speed of light]]. Here, :<math> \left| \,\mathbf{E}\, \right| </math> is the [[amplitude]] of the field, and :<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math> is the normalized [[Jones calculus|Jones vector]] in the x-y plane. If <math> \alpha_y </math> is rotated by <math> \pi / 2 </math> radians with respect to <math> \alpha_x </math> and the x amplitude equals the y amplitude, the wave is circularly polarized. The Jones vector is: :<math> |\psi\rangle = {1\over \sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix} \exp \left ( i \alpha_x \right ) </math> where the plus sign indicates left circular polarization, and the minus sign indicates right circular polarization. In the case of circular polarization, the electric field vector of constant magnitude rotates in the ''x''-''y'' plane. If basis vectors are defined such that: :<math> |\mathrm{R}\rangle \ \stackrel{\mathrm{def}}{=}\ {1\over \sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} </math> and: :<math> |\mathrm{L}\rangle \ \stackrel{\mathrm{def}}{=}\ {1\over \sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix} </math> then the polarization state can be written in the "R-L basis" as: :<math> |\psi\rangle = \psi_\mathrm{R} |\mathrm{R}\rangle + \psi_\mathrm{L} |\mathrm{L}\rangle </math> where: :<math>\begin{align} \psi_\mathrm{R} ~&\stackrel{\mathrm{def}}{=}~ \frac{1}{\sqrt{2}} \left( \cos\theta + i\sin\theta \exp \left( i \delta \right) \right) \exp \left( i \alpha_x \right) \\ \psi_\mathrm{L} ~&\stackrel{\mathrm{def}}{=}~ \frac{1}{\sqrt{2}} \left( \cos\theta - i\sin\theta \exp \left( i \delta \right) \right) \exp \left( i \alpha_x \right) \end{align}</math> and: :<math> \delta= \alpha_y - \alpha_x. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)