Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cognitive model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Locomotion==== One proposed mechanism of a dynamical system comes from analysis of continuous-time [[recurrent neural networks]] (CTRNNs). By focusing on the output of the neural networks rather than their states and examining fully interconnected networks, three-neuron [[central pattern generator]] (CPG) can be used to represent systems such as leg movements during walking.<ref>Chiel, H. J., Beer, R. D., & Gallagher, J. C. (1999). Evolution and analysis of model CPGs for walking. Journal of Computational Neuroscience, 7, 99-118.</ref> This CPG contains three [[motor neuron]]s to control the foot, backward swing, and forward swing effectors of the leg. Outputs of the network represent whether the foot is up or down and how much force is being applied to generate [[torque]] in the leg joint. One feature of this pattern is that neuron outputs are either [[Binary number|off or on]] most of the time. Another feature is that the states are quasi-stable, meaning that they will eventually transition to other states. A simple pattern generator circuit like this is proposed to be a building block for a dynamical system. Sets of neurons that simultaneously transition from one quasi-stable state to another are defined as a dynamic module. These modules can in theory be combined to create larger circuits that comprise a complete dynamical system. However, the details of how this combination could occur are not fully worked out.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)