Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Combinatory logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== One-point basis ==== There are one-point bases from which every combinator can be composed extensionally equal to ''any'' lambda term. A simple example of such a basis is {'''X'''} where: :'''X''' ≡ ''λx''.((x'''S''')'''K''') It is not difficult to verify that: :'''X''' ('''X''' ('''X''' '''X''')) =<sup>β</sup> '''K''' and :'''X''' ('''X''' ('''X''' ('''X''' '''X'''))) =<sup>β</sup> '''S'''. Since {'''K''', '''S'''} is a basis, it follows that {'''X'''} is a basis too. The [[Iota and Jot|Iota]] programming language uses '''X''' as its sole combinator. Another simple example of a one-point basis is: :'''X'''' ≡ ''λx''.(x '''K''' '''S''' '''K''') with :('''X'''' '''X'''') '''X'''' =<sup>β</sup> '''K''' and :'''X'''' ('''X'''' '''X'''') =<sup>β</sup> '''S''' The simplest known one-point basis is a slight modification of '''S''': :'''S'''' ≡ ''λxλyλz''. (x z) (y (λw. z))) with :'''S'''' ('''S'''' '''S'''') ('''S'''' ('''S'''' '''S'''') '''S'''' '''S'''' '''S'''' '''S'''' '''S'''') = <sup>β</sup> '''K''' and :'''S'''' ('''S'''' ('''S'''' '''S'''' ('''S'''' '''S'''' ('''S'''' '''S''''))('''S'''' ('''S'''' ('''S'''' '''S'''' ('''S'''' '''S'''')))))) '''S'''' '''S'''' = <sup>β</sup> '''S'''. In fact, there exist infinitely many such bases.{{sfn|Goldberg|2004}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)