Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computability theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Frequency computation=== This branch of computability theory analyzed the following question: For fixed ''m'' and ''n'' with 0 < ''m'' < ''n'', for which functions ''A'' is it possible to compute for any different ''n'' inputs ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x<sub>n</sub>'' a tuple of ''n'' numbers ''y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n</sub>'' such that at least ''m'' of the equations ''A''(''x<sub>k</sub>'') = ''y<sub>k</sub>'' are true. Such sets are known as (''m'', ''n'')-recursive sets. The first major result in this branch of computability theory is Trakhtenbrot's result that a set is computable if it is (''m'', ''n'')-recursive for some ''m'', ''n'' with 2''m'' > ''n''. On the other hand, Jockusch's [[semirecursive]] sets (which were already known informally before Jockusch introduced them 1968) are examples of a set which is (''m'', ''n'')-recursive if and only if 2''m'' < ''n'' + 1. There are uncountably many of these sets and also some computably enumerable but noncomputable sets of this type. Later, Degtev established a hierarchy of computably enumerable sets that are (1, ''n'' + 1)-recursive but not (1, ''n'')-recursive. After a long phase of research by Russian scientists, this subject became repopularized in the west by Beigel's thesis on bounded queries, which linked frequency computation to the above-mentioned bounded reducibilities and other related notions. One of the major results was Kummer's Cardinality Theory which states that a set ''A'' is computable if and only if there is an ''n'' such that some algorithm enumerates for each tuple of ''n'' different numbers up to ''n'' many possible choices of the cardinality of this set of ''n'' numbers intersected with ''A''; these choices must contain the true cardinality but leave out at least one false one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)