Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Computation tree logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Extensions == CTL has been extended with [[second-order logic|second-order]] quantification <math>\exists p</math> and <math>\forall p</math> to ''quantified computational tree logic'' (QCTL).<ref>{{Cite journal|last1=David|first1=Amélie|last2=Laroussinie|first2=Francois|last3=Markey|first3=Nicolas|date=2016|editor-last=Desharnais|editor-first=Josée|editor2-last=Jagadeesan|editor2-first=Radha|title=On the Expressiveness of QCTL|url=http://drops.dagstuhl.de/opus/volltexte/2016/6164|journal=27th International Conference on Concurrency Theory (CONCUR 2016)|series=Leibniz International Proceedings in Informatics (LIPIcs)|location=Dagstuhl, Germany|publisher=Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik|volume=59|pages=28:1–28:15|doi=10.4230/LIPIcs.CONCUR.2016.28|doi-access=free |isbn=978-3-95977-017-0}}</ref> There are two semantics: * the tree semantics. We label nodes of the computation tree. QCTL* = QCTL = [[monadic second-order logic|MSO]] over trees. Model checking and satisfiability are tower complete. * the structure semantics. We label states. QCTL* = QCTL = MSO over [[Graph (discrete mathematics)|graph]]s. Model checking is [[PSPACE-complete]] but satisfiability is [[undecidable problem|undecidable]]. A reduction from the model-checking problem of QCTL with the structure semantics, to TQBF (true quantified Boolean formulae) has been proposed, in order to take advantage of the QBF solvers.<ref>{{Cite journal|last1=Hossain|first1=Akash|last2=Laroussinie|first2=François|date=2019|editor-last=Gamper|editor-first=Johann|editor2-last=Pinchinat|editor2-first=Sophie|editor3-last=Sciavicco|editor3-first=Guido|title=From Quantified CTL to QBF|url=http://drops.dagstuhl.de/opus/volltexte/2019/11369|journal=26th International Symposium on Temporal Representation and Reasoning (TIME 2019)|series=Leibniz International Proceedings in Informatics (LIPIcs)|location=Dagstuhl, Germany|publisher=Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik|volume=147|pages=11:1–11:20|doi=10.4230/LIPIcs.TIME.2019.11|doi-access=free |isbn=978-3-95977-127-6|s2cid=195345645 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)